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Abstract

This compilation of formulae concerning proton storage rings covers
bunched beams as well as coasting beams. Some formulae are common to
both storage rings and proton synchrotrons. Where meaningful, the
application of a particular formula to the CERN Intersecting Storage
Rings (ISR) is given.




FOREWORD

This report is divided into independent chapters, each of which treats
a specific subject. Each chapter is preceded by a list of symbol definitions
applicable to that chapter and, where necessary, further definitions are
given in the text accompanying a formula. The symbols which are common
throughout are listed separately at the beginning. Thus, to establish a
symbol's meaning, the reader must first consult the text with the formula,
secondly the list at the beginning of the chapter and, if necessary, the
list at the beginning of the report.

A short list of basic references, in which the reader can find most
of the formulae, is given at the beginning of each chapter. Some formulae,
however, have been derived specifically for this report and no references
exist for them.

The values of some commonly used constants and of parameters related
to the energy and to the working conditions in the CERN storage rings are
given in Tables 1to 10.

The author would welcome any comments or corrections concerning the
formulae presented in this report which readers may wish to make.
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LIST OF FREQUENTLY USED SYMBOLS AND THEIR MEANINGS

X horizontal transverse coordinate [m]

z vertical transverse coordinate [m]

y general transverse coordinate, either horizontal or vertical [m]

y' = dy/ds derivative of the general transverse coordinate [rad]

s distance along beam axis [m]

R average machine radius [m]

6 =s/R azimuthal angle [rad]

t time [s]

I beam current [A]

e electronic charge [As]

c velocity of the light [ms=1]

B ratio of particle velocity to that of light

Y ratio of total energy of particle to its rest energy

n = _%__ _%_ revolution frequency spread per unit of momentum spread, Y being the value

Y Yi of vy at the transition energy where n changes its sign

P particle momentum [Gev/c]

Bx’ B, transverse components of the magnetic induction [t]

By azimuthal component of the magnetic induction [1]

Bo magnetic rigidity [Tm]

By transverse betatron amplitude function [m] in plane (y,s). A second index I
(By,I) indicates that the amplitude function is taken at one intersection of
storage rings

Qy number of betatron oscillations per revolution in transverse plane (y,s)

T, classical electron radius [m]

rp classical proton radius [m]

The definitions of x, z, s, 6 are summarized in Fig. 1. A prime denotes differentia-
tion with respect to s. The sign ~ or - on top of a variable indicates its maximum or
average value , respectively. The notation |Z| stands for the modulus of Z if Z is com-
plex, and the absolute value of Z if Z is real. The values of some physical constants
such as e and c are given in Table 1.

The MKSA unit system is used throughout this report except for the rest energy [eV],
the momentum of a particle [eV/c] and the vacuum pressure [Torr]. These three exceptions
are retained to respect common ‘usage.



The following abbreviations are used:

w.r.t.
r.m.s.
ISR
SPM

for
for
for
for

with respect to ;

root mean square ;

Intersecting Storage Rings at CERN ;

Split Field Magnet, installed in intersection 4 of the ISR.

Machine centre
(-R,0,0)

¢9,0,0)

Centre of curvature

Fig. 1 Coordinate system
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1. FORMULAE IN CONNECTION WITH THE TRANSVERSE PHASE SPACE'>2>*)

Symbols frequently used in this chapter

uy Twiss parameter

uy phase of the betatron oscillation

Ey transverse emittance [mrad]

d distance along beam axis from the entrance of a given element [m]
y horizontal or vertical transverse amplitude of the betatron

oscillation of a particle [m]

y' amplitude derivative or betatron oscillation angle [rad]
yp transverse position of the phase ellipse centre associated with

a momentum deviation [m].

1.1 Definitions of the basic beam parameters

The transverse parameters, in which we are interested, are the betatron amplitude
function B [m], the Twiss parameter uy, the phase uy, the momentum compaction ap,y [m]
and the number of betatron oscillations per revolution Qy' For each transverse plane,
these functions are defined by the following relations:

y(s) = VBY(S) Ey [a cos uy(s) + b sin W(s)]
a () = -7 8(S)
W) = f S
y J B

Y (s)
%,y = Tp7p

2 . (21R)

_ 1 ds _y

Y wd 5, x

Ey is given explicitly in Section 1.4.

The first relation defines the B_ function, where a, b are dimensionless constants
depending on the initial conditions. & is the machine circumference.

It is worth noting that the average value of the horizontal momentum compaction is
directly related to Ye by
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Two other parameters associated with Qy are often used:

3Q

3 (Ap} P)

3%2Q

\AJ -— 1
¢ - 732(Ap§p)

Q'/Q often being called the chromaticity.

%

Ap/p=0

Ap/p=0

Note the special meaning of the prime, which is here a derivative with respect to
Ap/p, and the unusual factor 2 in the definition of Q".

For the ISR: the values of all these parameters can be obtained from the computer pro-
gram AGS*) .
The value of R can be found in Table 2. Table 3 gives Ey’ Bz,I and Ep,x for
the standard ISR working conditions. Table 4 gives Qy at centre line and

X = 40 mm as well as Q)', for the presently existing working lines.

1.2 Matrix formalism for betatron oscillations

Let us consider a given element of the machine. It can be characterized by a
2 x 2 matrix M(d), which is defined as follows:

y(d) Y1
= M(d) d<2

y'(d) Y1
where % is the length of the machine element [m].

Since d is the longitudinal distance [m] from the entrance of the element, y, and y|
are the amplitude of the oscillation and its derivative at the entrance to the element.

Let us consider four particular forms of matrix M(d).

b )

cE({K d) \,—1.—I<_sf(\/—l(_ Q)

M(d) s
sign 4JK sf(\l-lz d) cf(\[f d)

i)  Straight _section:

M(d)

ii) Gradient sector_magnet:

where the significance of the symbols depends on the plane of the gradient sector
magnet.

In the focusing plane, the following meanings are valid:
sf = sin, cf = cos, sign = -1 .
In the defocusing plane, the meanings are:

sf = sh, cf = ch, sign= 1.
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The parameter K [m™7] can be expressed as follows:

k = [nl*sign in the bending plane,

B
B

K in the plane perpendicular to the bending.

G is the sector magnet gradient [Tm—] s
o is the bending radius [m] .
By convention, F-units are focusing in the horizontal plane while D-units are

defocusing.

iii) Quadrupole lens:

The matrix M(d) given in ii) is valid, with

|
o

2

1.
g

G
-l

in both planes.

iv) Edge effect of a_gradient magnet:

For a gradient magnet with a linear fringe field, the matrix M in the bending plane

will be
1 0
M = ,
tan €
5 1
and in the other transverse plane
1 0
M =
1 b
5[60 Cos € ~ tan e] 1

€ is the angle between the magnet edge and the perpendicular to the beam direction.
€ is taken as positive for both edges of a rectangular magnet (Fig. 2).

b is the length of the fringe field region [m] (Fig. 2).

p is the bending radius [m] .

For the ISR: the values of p, n/p and Bp are given in Tables 2 and 5.

Since the gradient magnets of the ISR are rectangular, their matrix M is a
product of three matrices: one matrix of type ii) for the central part and
two matrices of type iv) for the two edges, with e taken as being equal to
half of the bending angle. Assuming b/p small, M becomes




Magnet edge

Magnet

edge edge
9 b
P
Fig. 2 Field boundaries for magnets
tan € 1
cfWK d) + 22 E sf@K d) — sfW/K d)
o VK Vvk
M) =
2
[sign\/i N EM] sEWK d) + 218 E e g FWR @) + T E GeR d)
VK p? e o VK

The parameter definitions are given above and the signs + and - correspond to
the bending plane and to the plane perpendicular to the bending, respectively.

1.3 Interpolation of the transverse parameters through any element

Computer programs like AGs”) give the values of o s By’ Hy at a discrete number of
points. It can be useful to have formulae giving the values of the parameters at any point

inside the element, knowing their values o

.17 By,l [m], Myt at the entrance.

2

1+
= - - ——L—’l
O‘y(d) mllmmsy,l S PLYY) By ) * (m11m22+ PR a}’,l ’
bl
) 2 1 + 02

By(d) = mllsy,l + m, By 1’ 2m11m120ty,1 s
My

“y(d) = Wy + arctg o—p

11°y,1 T Mo%

The coefficients mij (functions of d) are the elements of the matrix M(d) defined in
Section 1.2.
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From these general formulae, two special cases can be deduced:

i) Interpolation in a straight section:

1+ a2 1
a (d) = o -d s
,1

7 7 By

1+ o2
B(d) = B - 2da +d2___ou s
Y Y5 , By

b

w,(d) = w  +arctg g—g—a——
Y Y y,1 Oy,

ii) Interpolation in a gradient sector magnet:

1+ a2
o | cf@VEa) - | —2LL 4 sign VK &, | %sf(zx/l_(_d) ,

ay(d) = oy

VK By |

o, 1+ a2 )
B () = B . cfAVKd) - LlsfVKd) + — Ll sFAVK )
b4 Y1 \/R_ K B

Y1

W@ =+ arctg sf(VK @)
Y Vs VK By ) cf(VK Q) - o ) sf(v/K d)

where the definitions of sf, cf, sign and K are explicitly given in Section 1.2.

1.4 Transverse emittance

Let us consider one particle of constant energy making an infinite number of turns.
All the positions taken by this particle in a transverse phase plane (y, y') at one given
point of the machine circumference define an ellipse (Fig. 3) with the following equation:

= I 2 ! 2
E B, [y v By oY) ]

The emittance Ey is the ellipse area and the factor 7 has to be included in the

numerical value of Ey'

1.5 Normalized transverse emittance

The emittance Ey is an invariant if the energy of the particle does not change. With
an energy change, the invariant becomes the normalized transverse emittance €y [m rad]

e. = E .

y v BY

For the ISR: Typical values of €_ are given in Table 2. These values correspond to
ellipses containing 86.466 % of the particles assuming a gaussian distribu-
tion (see also Section 1.6).



1.6 Beam size in the transverse plane

The beam size will be 2¥.

For a gaussian particle density, the relation ¥ = ch is used, where o_ is the stand-
ard deviation [m].

For zero divergence (y' = 0), the maximum value of y will be

B, E
yo = o f—Y ¥
0

1+ "
( ay)
The definitions of y and ¥ are summarized in Fig. 3.

1.7 Angular divergence of a beam

m

1+o2)E
§r = E_B_OX)__X
Y

The total divergence [rad] will be 29'.

At the pulse centre (y = 0), the maximum angular divergence will be

E
yl = 2

The definitions of y; and ¥' are summarized in Fig. 3.

A
yl
9" -
Yo
~
/
/ T —
} -
~ v y
- Yo ¥
~

Fig. 3 A two-dimensional beam phase ellipse
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2. FORMULAE IN CONNECTION WITH THE MAGNETIC FIELD'>2,%,5,6)

Symbols frequently used in this chapter

S, longitudinal position of one given magnetic element [m]
2 circumference of the machine [m]

W, (s) phase of the betatron oscillation (defined in Section 1.1) in

plane (y,s).

2.1 Magnetic rigidity

The general relation is

Bp=g

For p in GeV/c and Bp in Tm, this relation simply becomes

Bp = T p = 3.335641 P

p being the bending radius [m].

Note: [T] = [vsm2].
For the ISR: Table 2 gives the bending radius and Table 5 gives the magnetic rigidity [Tm]
for the standard ISR energies.

2.2 0rbit deformation associated with dipole fields

51gn B. (s)
y(s) = 251an /v

y(s) is the orbit amplitude at the position s of the circumference [m] ,

AB(s )

] e

—— cos [ ), - 'uy(S) - uy(sl)

AB  is the dipole field [T] orthogonal to the y-axis and to the s-axis,
sign is +1 for the vertical plane and -1 for the horizontal plane,
Bp is the magnetic rigidity [Tm] (see Section 2.1).

For dipoles or sections of dipoles which are short compared to the betatron oscilla-
tion wavelength, the integral on ds, can be replaced by a summation.

Since the functions y(s) and AB(s) are periodic with the machine circumference, it is
possible to develop them in Fourier's series. Using the phase My (Section 1.1) instead of

the coordinate s, the expression for the orbit becomes

- Yy oYy
v = Y800 D G G e [1p . ] :

2
p=-*° Qy Y
with
2mQ AB(
I U S AR VE 9%) i fx]
% 7, By () —gp— o | -ip Q duy, -

p is an integer, and AB and Bp are defined above.
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Assuming there is a correction system able to compensate exactly the harmonics n to m
of the amplitude function y(s), the average gain in the ratio of the extreme amplitudes
after and before correction will be for distributed dipole fields:

T2 2,
g(Q}” n, m) = 1 -_Bin__L__Iﬂ__

x

n, m, p are integers and g = Yeorr /; .
The infinite sum can be calculated analytically using7)

[ee]

1 -
Z PZ"Q)Z, = 'z‘TQr—y (TT-Q—‘COthTQy>

p=1

2.3 Tune shifts, amplitude beating and horizontal momentum compaction changes

associated with quadrupole fields

9
G
W, = & [ 86 o g,
(o)
5_81 1 % G(s,)
By (s) = Z—E-m*—zjﬁ—Q;/By(sl) B cos [2 (Qy“ - lUy(s) - Uy(51)|>] ds; ,
(o]
By (s

Aap’x(s) I N o / \/ ) p’x(sl) cos [an— IuX(S) -ux(Sx)l] ds; .

G is the quadrupole gradient [Tm™],
is the horizontal momentum compaction at the quadrupole [m] (see Section 1.1),

L

For a short quadrupole, the note mentioned in Section 2.2 equally applies.

a,
P,X
Bp’ is the magnetic rigidity [Tm] (see Section 2.1).

2.4 Vertical momentum compaction associated with skew quadrupole fields

The vertical momentum compaction [m] is the ratio of the vertical shift in position
to the momentum change. Its mathematical definition is given in Section 1.1.

B(s

Gy (51)
ap’z(s) = e g, f\} p,x(sl) cos [nQZ— |uz(s) —uz(sl)l] ds; .

= dB, /dx is the skew gradient [Tm],
Bp is the magnetic rigidity [Tm] (see Section 2.1),
ocp X(s 1) is the horizontal momentum compaction at the skew quadrupole [m] (see Section 1.1).
b

For a short skew quadrupole, the note mentioned in Section 2.2 equally applies.
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The vertical momentum compaction excited by a skew quadrupole manifests itself as a
median plane tilt, which is given by

o.
X = arctg EM

PsX
X being the median plane tilt [rad].

2.5 Multipole analysis of a two-dimensional magnetic field

In cartesian coordinates, the two-dimensional magnetic field in a magnet gap can be
derived from a complex potential P [Tm]:

©o
Po=vein =y BN
N1

where:
w =x + iz , B(N'I)B a(N_l)B
B(N-l) _ B(N-l) +i B(N-l) - Z +i X
Z X axIN—li 0 BXiN—li 0
X=z= X=z=

N is an integer associated with the 2N-pole term.

The field components are then given by:
- _ov _ oP
BX = 5; Im (a—w) >
oV oP
z x o re (W)
In cylindrical coordinates, the complex potential P can be written:
o]
Z - N _iN
P = Nl'— B(N D r e ¢ ,
N=1

r is the distance from the origin [m],

oo}
1]
n

¢ is the angle between the x-axis and the radius vector [rad].

The real component of P becomes

fee]

N
vV = E %}T I:BgN_l) cos N¢ - B)((N-l) sin N ¢],
N=1

and the field components are given by
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Note that the derivatives can be calculated from

27
- [
gD - N /VsinN¢d¢,
X N
mr
o
20
(N-1) N!
Bz N Vcos N ¢ do .
LS

FORMULAE IN CONNECTION WITH THE LONGITUDINAL PHASE SPACEZ’a)

Symbols frequently used in this chapter

\Y cavity voltage [V]

] s phase of the synchronous particle
) phase of a particle

h harmonic of the radio-frequency system: Ay = -hA6
M number of bunches

2 total bunch length [m]

Eo rest energy of proton (Table 1) [eV]

m,  rest mass of proton [ev/c?]

3.1 Acceleration rate

The rate of energy increase for the synchronous particle is given by:

d(Bp) ) V sin § s
dt 2mR

The phase of the synchronous particle is often replaced by

T = sin @s

Using the relation in Section 2.1 for p in GeV/c and Bp in Tm, the rate of momentum

increase can be written:

d B Vr
& = kg
where:
kK = —= = 0.0477135 [ms~].
2m10° [ms™]

For the ISR: R and V are given in Table 2.
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3.2 Motion of a nonsynchronous particle

The momentum increase of a nonsynchronous particle differs from the one of the syn-
chronous particle and the former particle will oscillate around the latter in agreement
with

RZ vy E
d o d¢ eV - s _
I (——n ra _dt> * 75 (sin®-sine) = 0.

The values of R, Y and n have to be taken for the synchronous particle. When these
parameters are constant or slowly varying, the motion equation becomes

&6 4Am? £2
—_— + o - 1 =
e EEE_EE (sin & - sin @s) 0.

This equation and its first integral also give the variation of the momentum for the
nonsynchronous particle, since

Ap _ 1 o \/Z_fp JCOS@—COS <I>i+(q>_q>i) Sinq)s
p

2m f}evlln dt f;ev hn cos ®s

fp is the phase oscillation frequency (Section 3.3) [s7!]

frev is the revolution frequency (Section 3.3) [s"l]

o, is one of the two extreme stable phases where d¢i/dt = 0 (Section 3.6).

For the ISR: R and h are given in Table 2, while y is given for the ISR standard energies
in Table 5. The n-values given in Table 6 correspond to the currently used
working lines. For other lines, n can be calculated starting from Ye given
in Table 3. Note that all these figures are only strictly valid on the
central orbit.

3.3 Revolution frequency and phase oscillation frequency

The revolution frequency [s~'] of the particles is

_ Bc
frev T 2mR

In the case of small phase oscillation amplitudes around the stable phase @s, the
oscillation frequency [s™!] is exactly given by

I eV hn
fp—RJYEO cos@s,
where:
= < = 7 -1
k 372 1.90349 x 107 [ms-!], and

cos o = \}1 -T2, y and n being taken for the synchronous particle.

For the ISR: the values of EO, R, V, h, B, vy and n can be foundg}n Tables 1, 2, 5 and 6.
The value of the revolution frequency for light, fre
Table 2.

v (8 =1), is given in
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3.4 Revolution frequency spread and stability condition

The frequency spread is related to the momentum spread

H

__rev _ A
P

where:

no= L__ 1 _ 1 _7px
Y iy v* R

f rev 1S defined in Section 3.3.

Looking at the motion equation in Section 3.2, it is clear that the motion is stable
and that the RF buckets can exist only if f; is positive, which is equivalent to

> .
n cos <I>s 0

For the ISR: the values of n for different conditions are given in Table 6. Since n is
always negative, the stability criterion implies that

m
5= < & < m.
2 s

3.5 Moving bucket area

The moving bucket area (Fig. 4) is given in the coordinates cAp/E 0= Ap/moc and ¢, by

the following relation:
V Yy
A = koa(I) " °
h[n E, 7’

where:

16
VZn

a(l) is the factor between the moving and stationary bucket areas (Table 7).

k = = 6.38308 ,

For the ISR: the harmonic h and the voltage V are given in Table 2 and the values of y are
given in Table 5 for the ISR standard energies. Table 6 gives the values
of n for different conditions.

3.6 Separatrix equation and extreme stable phases of a bucket

For stable motion (Section 3.4), the particles must remain inside the bucket. The
limit of the bucket in the phase plane (Ap/moc, ®) is called the separatrix (Fig. 4) and
is given by the equation

2 f2 f2
1 (de) __"p_ i =-_DP_ i
n? <Eﬁ:> Cos q)s (cos ¢ + ¢ sin <I>S) oS @S (cos @ + &; sin <I>s)
keeping in mind that (Section 3.2)

bAp BY de
b
m.C S hndt
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fr ov is the revolution frequency (Section 3.3) [s7!],

fp is the phase oscillation frequency (Section 3.3) [s’l],

®, is one of the extreme phases which can be reached by a stable particle.

The two extreme phases ®; and ¢, are given by (Fig. 4)

<I>zs1n<I>s+cos<I>2 = <I>1sm<bs—cosd>s.

®, - & is the total phase spread of the bucket. It is equal to 2A® in Section 3.9 only
if the bunch fills the bucket, since by definition the bunch is the part of the bucket full
of particles.

3.7 Momentum spread in the bucket

The extreme momenta which can be reached by a stable particle (Fig. 4) are given by

Ap _ L1 eV 2 -1-2 i
> 18 hnYEo "cosés 1 Tr<I>S)51n<I>s.

Using the definition of ap X given in Section 1.1, the momentum spread of the bucket
b
can give its horizontal width.

For the ISR: EO, h, B, v, n are given in Tables 1, 2, 5 and 6.

It should be kept in mind that the stability criterion (Section 3.4) implies
that in this machine

Ap _cAp
moc  E,
Stack region
4"1 Jz ¢
T T -
,4p v 1 // Buckets of an
P / accelerated pulse
, 7
16~ 0,1 2n/h Separatrix

Fig. 4 Longitudinal phase space
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3.8 Time needed for an adiabatic change of bucket parameters

When stacking in the momentum space of proton storage rings, it is necessary to reduce
the bucket area when the pulse arrives close to the stacked beam, in order to avoid per-
turbing the stack. The necessary time [s] for adiabatic change of bucket parameters is:

oo ' Mag ( 11 )
4m(l - nad) fp,z fp,l

fp 1 is the phase oscillation frequency (Section 3.3)associated with the initial bucket [s‘q,
b

fp ) is the phase oscillation frequency (Section 3.3) associated with the final bucket [s7'],
b

N.g is the phase-space efficiency of the process, defined as follows:

ep being the theoretical adiabaticity.

For the ISR: the bucket area is reduced by diminishing the cavity voltage at the end of the
accelerating cycle. In this case, the formula for T [s] becomes:

Vv, 1
T= [VV; - 1] 800e

€ is the adiabaticity coefficient as set in the ISR and is related to € _ by

£
»1

€ 63.66 °

Typical values for e are: 0.015/0.05.

V: is the initial accelerating voltage [V] s
V, is the final accelerating voltage [V] .

3.9 Debunching time

In the absence of radio-frequency fields, the beam debunches. By definition, the time
in which the front of the bunch reaches the tail of the next bunch, for rectangular bunches,
is the debunching time tdb[s]:

T - Ad

db £, hinlap/p *

t

freV is the revolution frequency (Section 3.3) [s_l],

2A¢ 1is the total phase spread of the bunch,
2Ap 1is the total momentum spread of the bunch [GeV/c].

For the ISR: the values of h and ffev are given in Table 2. The standard ISR values of n
are given in Table 6.
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3.10 Azimuthal current distribution inside one bunch

For a given number N of charges in a bunched beam and a given number M of bunches, the
azimuthal current distribution inside a single bunch can be written as follows for rect-
angular, parabolic and triangular bunches successively:

Ie = I0

2
= _3. - glj 2 -
Ie > Io [l ( 7 ) ) ] for

= . 2R
Ie = 2 IO [1 + sign - e]

B
Bl

sign is + 1 for 8 < 0 and - 1 for 6 20 .
The expression for IO is

_  NeBc
o M2

N being the total number of charges.

For gaussian bunches, the current distribution inside a bunch is given by

NeBc RzeZ]
I, = exp [—
® VoM 207,
o, is the r.m.s. value of the coordinate s for a gaussian bunch [m].

In this case, a standard definition of the bunch length may be 2 = 405.

For the ISR: the values of R and B are given in Tables 2 and 5, respectively. The bunch
length is of the order of 7 m and the bunches are approximately parabolic.

3.11 Average current for a circulating beam

The average current I is

where:
- ¢ _ —12f
k = == = 7.64462 x 107?[Am],
N is the total number of charges in the circulating beam.
This formula is valid either for a bunched beam or for a coasting beam.

For the ISR: the values of R and B are given in Tables 2 and 5, respectively.
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3.12 Bunching factor

By definition, the bunching factor is the ratio of the average current I [A]in the
circulating beam to the peak current i [A] inside a bunch. This factor can be calculated
from the formulae in Sections 3.10 and 3.11 and will depend on the shape of the bunches

The total length 2 of the bunches is taken as 4 times the r.m.s. value for a gaussian shape,
as mentioned in Section 3.10.

S is a shape factor taking the following values:

s =1 for rectangular bunches
S = 1.5 for.parabolic bunches
S = 1.6 for gaussian bunches
S = 2 for triangular bunches.

For the ISR: the bunches are approximately parabolic, so that S = 1.5. The bunch length is
of the order of 7 m.

3.13 Relative amplitudes of the bunch harmonics

The relative amplitudes of the bunch harmonics q are defined as follows:

Ie = 1 E Cq elqe , q = integer ,

q
Ie is the azimuthal current distribution of a bunched beam (Section 3.10) [A],
T is the peak current inside a bunch (Section 3.10) [A]

The expressions for c_ depend upon the current distribution inside a single pulse. If
the bunches are (Section 3.10)

i)  rectangular

_ 1 . g
c = DﬁSIHZR R

= 4R .?_R_ 1 g.& - ﬂ&
cq D 71 ) [qz sin 5o - cos ZR] s

"""" 2 2
c =1D ’s exp[-q—fi] s

2

q Vr R 2R

iv) triangular

_ 2R _ qe
cq = Dﬂng [1 cos—R] ,

where D is the following series development:

M-1

D =Zexp[—iqk-2f:—r], k = integer .
k=0
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If the bunch harmonic number q is a multiple of h, D becomes equal to the number of
bunches M. If, furthermore, the number of bunches is equal to h, D is zero for all bunch
harmonics which are not a multiple of h.

For the ISR: the values of h and R are given in Table 2. The bunch length is given in
Section 3.10. The bunches are approximately parabolic, so that formula ii)
above applies. Since M is smaller or equal to 20, none of the harmonic
amplitudes cq is zero.

FORMULAE IN CONNECTION WITH THE VACUUM CONDITIONS®,%,!9,11)

Symbols frequently used in this chapter

L half distance between two vacuum pumps [m ]

S half-lumped pumping speed [m®s~']

c, molecular conductance per unit length of the vacuum pipe [m*s=1]
o, ionization cross-section of the gas [m?]

ng net desorption factor, i.e. the number of molecules desorbed per
incident ion minus the sticking probability of the ion, which is
normally equal to 1

n molecular density of the gas [m™*]

P pressure of the gas [Torr]

g gas desorption per tube length, independent of gas density [m™s~']
A cross-sectional area of the vacuum tube [m*]

4.1 Relation between pressure and gas density

The molecular density n [m’s] of a gas at pressure P [Torr] is given by

Tst

m PSt Vﬁ

= 9.65118 x 102* [m~® K Torr~'],

Nm is the number of molecules per mole (Table 1),
T_, is the standard temperature (Table 1) [K],
is the standard pressure (Table 1) [Torr],

a~]

is the molar volume of an ideal gas under standard conditions (Table 1) [m®],

|
E<

is the temperature of the gas [K] .

The atomic density n, [m=*] is obtained by multiplying the molecular density n by the
number of atoms N, in a molecule.

For the ISR: using T = 300 K, this relation becomes

n = 3.21706 x 1022 p .,
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4.2 Gas desorption coefficient and molecular conductance

The gas desorption per tube length g [m™s™'] is defined by

g = p.q -
p, is the perimeter of the vacuum chamber [m],
q is the specific gas desorption [m~2s~1] .

The specific molecular conductance ¢ [m*s™1] is

for_a_long tube_of circular _section:

for a_long tube of elliptical section:

- "T 2
Ch * 97 w Mab ,

for_a long tube of rectangular_section:

T
c, = 92.6n{m-a2b Y(S§ = a/b) ,

where:

Y($) =%—2,n (8 + /8% +1) +2n<1+—‘662—+1)+g§_2 [1 + 8% - (1 + 52)3/2] N

T is the absolute temperature of the gas [K],

M is the molecular mass (Table 8),

r is the radius of a circular tube [m]

a is the half-major axis of an elliptical tube or the h;1f—mjor side of a rectangular tube[m],
b is the half-minor axis of an elliptical tube or the half-minor side of a rectangular tube[m].

For the ISR: some typical values of the perimeter P. and of the specific conductance c
for nitrogen molecules at 300 K are summarized in Section 4.3 for different
regions of the machine circumference.

For the ISR residual gas composition, the total specific gas desorption q is

4 x 10'° m~2s~!. This value is essentially the H, contribution to the specific
desorption, since the value of q for N, or CO is of the order of 1 % of the
total value.

4.3 Equilibrium pressure without a particle beam

The geometric model used is a periodic structure with constant specific molecular
conductance n and regularly spaced pumps (at distance 2L), all having the same pumping
speed 2S. The model assumes, furthermore, that the gas desorption coefficient g is con-
stant. In this model, the longitudinal coordinate s has its origin at the mid-point
between two pumps.
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. L L% -s?
no(s) " g<§+ 2C )

m
g and ¢, are explicitly given in Section 4.2.

The equilibrium molecular density n is that density existing in the vacuum pipe before
stacking a beam. The corresponding equilibrium pressure Po can be deduced from the relation
given in Section 4.1.

For the ISR: it is shown in Section 4.2 that g depends on the perimeter 2 of the vacuum
chamber and that n depends on the gas. Some values of P of <h for the
nitrogen at 300 K and of the distance 2L are given in the following table for
different regions of the ISR machine:

2L Py ¢y (N2)
[m] (m] [m*s=]
Elliptical chamber 5 '
0.05 x 0.16 m? 2.5 0.355 0.05
Round chamber 10
0.16 m diameter 4 0.503 0.51
________________________________________________ e ]
Experimental region. I2 8
0.15 m diameter 4 J 0.471 0.42
Special chamber in 8
injection septum magnet 0.343 0.03
0.04 x 0.16 m? ‘1.6

The value of the pumping speed for one half the combined station ion pump
and sublimation pump is S = 0.5 m3s™?

4.4 Dynamic pressure behaviour in the presence of a beam

The particle beam induces gas desorption via bombardment of the chamber walls by ions
created in the residual gas. Neglecting the surface effects, the corresponding dynamic
change in the molecular density n [m™ ] is given by

[ C\) C\) F\’t
n(S,t) = Z COs )\VS. F_ + B\) - .F.__ exp \- T s

v=1 v v
where:
C. = 28 sin LA,
AV] 3.2 A \Y
v v
I
= 2 — —
F\) mev % Nae -
, sin ZA\)L
a? = L+ —a—
v ZA\) ’
and )‘v are the roots of the transcendental equation Av tan )\vL = ci
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The initial gas distribution n(s,0) gives for the Fourier's coefficients B :

L
_ 1
B\) <z /n(s,O) cos )\vsds .

v
-L
The geometric model used is identical to the model given in Section 4.3 and n a is also

assumed to be constant.

The relation between the density n and the pressure P is given in Section 4.1. The
coefficients g and c, are given explicitly in Section 4.2.

For the ISR: the latest values of the ionization cross-section at 26 GeV/c are given in
Table 8. The total value of q is given in Section 4.2. The present values
of L, S and n for N, at 300 K are given in Section 4.3.

4.5 Equilibrium pressure in the presence of a beam

A finite equilibrium pressure can only exist for negative exponents in the expression
given in Section 4.4. The stability condition in the presence of a beam is thus given
by F, > 0, i.e.

ngl < (gD = —T 22 .
critical +

A, is the first root of the transcendental equation given in Section 4.4.

When this condition is fulfilled, the equilibrium density is given by

C
n(s,trx) = E FX cos kvs ,
v=1

where C\) and Fv are given in Section 4.4.

Taking the first termv = 1 of this series expansion, an approximate pressure bump
equation valid for the equilibrium can be written. This yields the relationship between

the starting pressure P0 [Torr] given in Section 4.3 and the pressure in the presence of
a beam P [Torr] :

Po
P -
o 0+ndI ’

ec_ A
m

in which appears the so-called effective pumping speed S_c. [m?s1]

S =cm)\?=—g—

P

eff

The last relationship between the equilibrium pressures with and without beam can be

generalized for a system with 2 gas components. The pressures P_| and Pw are related to

1 2

the starting pressures P 0,1 and Po, , by



b.. b..
=2  +p .fl1- g-J-J—-
0,1 eff,j

wi b-- b.. b.. b..
t 1o il 1 -3 \__"ij ji
Seff,i Seff,j) Seff,i Seff,j

i=1,2; j=1,2 and i#j .

with:

The coefficients bij are defined by

(¢

b.. = —Ta]

ij e’ nd,ij I i,j=1,2.

o, j is the ionization cross-section of the gas number j [m?],
b

g 1j gives the desorption yield of gas i by an ion of gas j.
For the ISR: the following approximate values of Se £f Can be used for estimating the values

of ny inan elliptical chamber (0.05 x 0.16 m?):

~ 2.~1
Seff,Hz 0.028 m°s

~ 2o=1
Seff,CO = 0.0075 m*s R
Ny being given by the relation (see above)

R <1_fc_>>
"4 o, I p_ /-

+

P0 and P_ are measured and o, is given in Table 8.

4.6 Pressure decay when dumping the beam

When the beam is dumped, the pressure decreases again. The starting decay rate is
simply related to the equilibrium pressure in the presence of the beam P by

d e A ©
P a4 is the decay rate of the pressure just after dumping the beam [Torr s~'] .

4.7 Clearing current associated with electron production

The ionization of the residual gas produces electrons, which give rise to a clearing
current. In addition to this, the ions produced may sputter metal atoms from the vacuum
chamber walls, which further increase the clearing current seen by collecting electrodes.

The global effect is
§IZ
I<:1 - Igl (1 YT -
v s, re - AL,

t

[N
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where:
o _
Iq = % N, ndI,
I4 is the total clearing current seen on the collecting electrodes [A] ,

121 is the clearing current due to primary electrons only [A] ,

§ and A are the sputtering coefficients for the residual gas and for the sputtered
atoms, respectively,
is the mean velocity of the sputtered atoms [m s~'],

is the sticking probability of the sputtered atoms,
is the ionization cross-section of the sputtered atoms [m?] ,

a M u <li
+

+
-
=
N

is the ionization cross-section of the nitrogen gas [mz] ,
the length over which electrons are cleared [m] ,
the radius of the vacuum tube [m] ,

[ =W
IO
" wn

S

is the equivalent density of nitrogen gas for ionization [m‘s] .

The molecular density n,_ is related to the N» equivalent ionization pressure P, [Torr]
by (Section 4.1)

P
n, = k-

+ T -
k is given explicitly in Section 4.1,
T is the absolute temperature of the residual gas [K] .

The pressure P, is the pressure of nitrogen giving the same ionization current as the
actual residual gas. For a mixture of different gases, the expression of P, is

1

p, = °+,N2 ? (Pi §G+’j>.

i is numbering the gases of the mixture,

j is numbering the atoms in a molecule of the ith gas. If there are m identical atoms B
in a molecule, the summation on j should contain every one and can be replaced by mo,

P. is the pressure of the ith gas [Torr] , ’

o, ; is the ionization cross-section for protons on the jth atom [m?].

B’

Since the denominator in the expression for ICl may vanish at some given current I,
the clearing current and the density of sputtered atoms will tend to infinity. This criti-
cal beam current is given by

TVs, re
1 - t

critical 20% .

For the ISR: using the value of o, N, given in Table 8 and T = 300 K, the clearing current
b
due to primary electrons is

0 -
ICl = 2.63799 P, d I .

For the typical ISR residual gas composition, P, is calculated from the above
mentioned formula, so that:

P, = 0.64P, ,

Py being the gauge pressure [Torr] .
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4.8 Beam neutralization factor

Electrons produced by ionization of the residual gas (Section 4.7) become trapped in
the potential well of the particle beam and as a result the beam becomes partly neutralized.
If p c is the total charge density in the beam and pp the density of the protons alone, the
definition of the neutralization factor n e is

e = pp (1M .

FORMULAE IN CONNECTION WITH LUMINOSITY!Z,13,1%,15)

Symbols frequently used in this chapter

L luminosity [m2s™1]
L0 luminosity for centred beams [mfzs'l]
heff effective height associated with two vertically centred beams colliding
vertically at zero angle [m]
Werf effective width associated with two horizontally centred beams colliding
horizontally at zero angle [m]
o, , r.m.s. value for the vertical densities of particles in beams 1 and 2 [m]
’
T, , Tr.m.s. value for the horizontal densities of particles in beams 1 and 2 [m]
’

¥ horizontal colliding angle [rad]

5.1 Effective sizes of thinvbeams

For horizontal and vertical Gaussian distributions with r.m.s. values 1, , and o, _,
b H

the effective sizes are

Wopr = YRR
org = V2T [0 + o2 .

h

These relations apply to the case of Gaussian beams colliding at zero angle horizon-
tally and vertically, respectively.

The values of o, , and T, , have to be taken for 8, ; and B, ;, respectively (see
Section 1.6). ’ ’

Note: 2v/7 = 3.544908 , vZm = 2.506628.

5.2 Horizontal standard deviation of a stacked beam

When the beam is stacked in the longitudinal phase space (Fig. 4), its shape is
approximately rectangular in the variable x. For a rectangular horizontal distribution
with Gaussian tails, the standard deviations T, , are given by
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. 1 " + 3/21 5
1.2 -
’ 2/5 Wiz * Vam 61,2

3 2 2 3
w? Wi, v 28, wy, v 12/m 8]

1,2

’

w, , is the total width of the rectangular part of the distribution [m],
b

8, is the r.m.s. value of the Gaussian tails of the distribution [m] .

1,2

Note : 23 = 3.464102 , V2m = 2.506628.

5.3 General definition of the luminosity

By definition, the luminosity is the time-averaged integral over the interaction

volume 2 of the number of reactions per unit time and unit volume

Trev )
_ 1 d*N
L‘G—T*f farzafdtdﬂ’
T revo Q

T is the revolution time of the particles [s] (see Section 3.3),
0. is the total cross-section of the reaction [m?],
Q  is the interaction volume where the two beams collide [m®], do = ds dx dz.

The number of reactions per unit time and unit volume satisfies the following relation
associated with the Lorentz transformation of the variables:
1 d®N _ E
U_M - pl(X,Z,S,t) pz(X,Z,S,t) C (61:829¢) ’
T

where the relavistic factor E is given by

E(8,,8,,¥) = y8 + B2 + 28,8, cos ¥ - G263 sin’ y .

When B, = B,, this factor becomes

]

E(B,¥) = 2B cos % 1 - g2 sin? &

P, 2(x,z,s,t) are the particle densities per unit volume, which can also depend explicitly
b

on time as, for instance, in the case of a bunched beam.
The indices 1 and 2 are associated with beam 1 and beam 2.

Some specific applications of this general formula are given in Sections 5.4 to 5.7.

Note : L [wb~!s™1= 10"%* L [m~2s"1] .

5.4 Luminosity for two coasting beams with a non-zero colliding angle

Assuming a vertical Gaussian distribution of the particles and a horizontal colliding

angle, the luminosity for two coasting beams is given by

L = E(B,,B,,¥) L Lo exp _l.___zz_
12T e ¢ ByB, hypp sin ¥ 22+ 02 ]’

z is the vertical beam separation [m] .
The indices 1 and 2 are associated with beam 1 and beam 2.
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The effective height heff is defined in Section 5.1 and is assumed not to vary over
the interaction length. The relativistic coefficient E(B,,B,,¥) is given in Section 5.3.

With the assumption that B, = B, = 1, the expression for L simplifies to

I. 1 1
L = k 1 2 127
hegr t8 (/2 eXp[ 2 o}

where:

ot
LI}

_e%E = 1.299427 102° [A~2m's™1).

This formula is also valid for a vertical colliding angle and a horizontal Gaussian
distribution provided that the vertical variable z, h .. and o, , are replaced by their
horizontal equivalents x, Wogs and Ty,25 respectively.

This formula applies directly to the case where one of the two beams is bunched, if
the interaction length is small compared with the bunch length and if the average current
(Section 3.11) of the bunched beam is used.

For the ISR: the different values of ¢ associated with the SFM are given in Table 10.
For the nominal value of ¢ = 14.773° and for B, = B, = 1, L reduces to

I I 1 z?
L = 1.0024 10%° 22 exp [- ———].
hege 202+ a2

5.5 Luminosity for two bunched beams with a non-zero colliding angle

Assuming transverse Gaussian distributions for the particles, a finite horizontal
colliding angle and a bunch length which is large compared to the interaction length, the
luminosity for two bunched beams is given by

2mR I, I, 1 z?
L = E V) 5% S' Xp I_
(81’82, ) Mg 82C 6182 heff sin w ¢ 2 0% + 0% ’

z is the vertical beam separation [m] ,

M is the number of bunches in the two beams,

2 is the full bunch length [m] .

The indices 1 and 2 are associated with beam 1 and beam 2.

The effective height heff is defined in Section 5.1 and is assumed not to vary over
the interaction length. The relativistic coefficient E(B,,B,,y) is given in Section 5.3.

S' is a shape factor depending on the form of the bunches (Section 3.10):

S' =1 for rectangular bunches,
st = 1.2 for parabolic bunches,
S' = 1.234 for Gaussian bunches,

S' = 1.333 for triangular bunches.

In the case of Gaussian bunches, the bunch length has been taken as 4 times the r.m.s.
value (Section 3.10). These values of S' are true if the bunches of each beam are synchro-
nous.




- 28 -

As in Section 5.4, this expression for L simplifies when 8, = B, = 1 and remains ‘valid
for a vertical colliding angle provided that the vertical variables z, he £f and 0y,, are
replaced by their horizontal equivalents x, Wors and T, ,20

5.6 Luminosity for two coasting beams with zero colliding angle

Assuming horizontal and vertical Gaussian distributions of the particles, it is pos-
sible to calculate the luminosity for two coasting beams with zero colliding angle when
the interaction length is given. Since the interaction length can be arbitrarily large,
it may be important in this specific case to take into account the variations of the beam
sizes over this length:

_ 1 2?2 x?
Lo Loe’q”;'f[o% ]‘ ’
where:
I, I,

2
L = (B *+8) = 28, 1 F|arctg 7%— , 41 -<g££>
° €°C BiBy hopp Wope %0 2,1 x,1

for B)(,I > Bz,I ’

L I,

2
L, = (B *+8B,) 28, ; F arctg—d- 1- .1
PP et BiBy Bopp Wopp X0l 2Be,1” B
b

F(¢,k) being the elliptic integral of the first kind?»¢),

x is the horizontal beam separation [m] ,

z is the vertical beam separation [m] ,

d is the interaction length [m] .

The indices 1 and 2 are associated with beam 1 and beam 2. Bx,I and BZ.,I are the minima of
the betatron amplitude functions, which are assumed to be at the centre of the interaction
region. The effective sizes h off and Wors defined in Section 5.1 are taken at these minima,
and the size variation is quadratic.

If the beam sizes do not vary over the interaction length, Lo simplifies to

I.I,d
LO=(81+62) S

e”c BB, hopp Wore

The above formula directly applies to the case where one of the two beams is bunched
provided the average current (Section 3.11) of the bunched beam is used.

5.7 Luminosity for two bunched beams with zero colliding angle

Assuming horizontal and vertical Gaussian distributions of the particles, the luminos-
ity for two bunched beams with zero colliding angle is given by

R L I, 1 22 X2
L= 8 +8) e j- 3 + ]
S N N B e s A
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x is the horizontal beam separation [m] ,
z is the vertical beam separation [m] ,
M is the number of bunches.
The indices 1 and 2 are associated with beam 1 and beam 2. The effective sizes heff and
W, gg are defined in Section 5.1 and are assumed not to vary over the interaction length,
which is equal to the bunch length.

Compared with the case described in Section 5.5, this expression for L is not depend-
ing on the bunch shape and is only valid if the bunches of each beam are synchronous.

5.8 Beam-beam rate at one intersection

B is the beam-beam rate [s™!],
o, is the monitor constant at this intersection [m*].

5.9 Measurement of the effective sizes of the beam

For two beams colliding at a large horizontal angle, the only relevant beam size is
the height as shown in Sections 5.4 and 5.5. On the contrary for colinear beams, both the
height and the width are important (Sections 5.6 and 5.7). In both situations, however,
the same method can be used for measuring the effective sizes of the beam, which are de-
fined in Section 5.1. For Gaussian distributions, the effective sizes are given by inte-

grating the beam-beam rate w.r.t. the beam separation:

(o]

1
h = - B(z) dz ,
eff  §(z=0) f

-00

(o]

1
= < B dx ,
Weff R0 / (x)

-00

0 [s7'],
}§(X=O) is the maximum beam-beam rate appearing in x = 0 [s‘l],
B(x) is the beam-beam rate as a function of the horizontal beam separation x [s7'],

]§(z=0) is the maximum beam-beam rate appearing in z

B(z) is the beam-beam rate as a function of the vertical beam separation z [s"l].

For the ISR: this method of measurement of he £f is commonly used. In addition to this,
there is a beam profile monitor using a sodium curtain. Measuring the full
widths D, and D, [m] with this monitor at the half-maxima of the vertical
beam profiles for beams 1 and 2, the effective height can be estimated from

B
= 2 2y _ P z,1
hope = V2m 4/0.191 (D2 + D2) - 1.1 107 4/ =2

Z,m
The constant 1.1 10~° comes from an experimental estimation of the instrument's
D, and D, inm). B is the value of Bz at the

eff’ Z,M
monitor position. If only one beam is measured (Dm) , it is necessary to

resolution (valid for h

assume that both beams have roughly the same height D, = D, = D, in the above
formula.
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5.10 Luminosity loss due to orbit distortions for a non-zero colliding angle

Orbit distortions can appear as median plane tilts and longitudinal slopes at the
intersections. If the horizontal colliding angle is different from zero, both these
mechanisms reduce the luminosity for vertically aligned beams as follows:

AL 1
T S0 ()™ + (1%,

e

2 + 12) cos? (V/2
%____4.1(1 2) /2) (4)1_@2)2’

héff sin? ¥
AL/L is the luminosity loss,

X, , are the horizontal median plane tilts for beams 1 and 2 [rad] ,

9, , are the longitudinal slopes in the plane (z,s) for beams 1 and 2 [rad] ,

T, , are given explicitly in Section 5.2 for a stacked beam [m] ,

is given explicitly in Section 5.1 [m] .

These formulae are still valid for a vertical colliding angle, vertical median plane
tilts and longitudinal slopes in the plane (x,s) if T, » and heff are replaced by o1 > and
Woggs respectively.

For the ISR: possible values for y are given in Table 10.

5.11 Luminosity loss due to orbit distortions for a zero colliding angle

From the two effects mentioned in Section 5.10, only the second is important for a
zero colliding angle, since the beam is generally circular in such an intersection

(ap x = 0). For vertically aligned beams, the reduction of luminosity will be
’
2
s 26100 2@ - 0%
h2
eff

d  is the interaction length [m] ,
®, , are the longitudinal slopes in the plane (z,s) for beams 1 and 2 [rad] .
’

This formula gives the luminosity loss for longitudinal slopes in the plane (x,s)
provided that h off is replaced by Worpge
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FORMULAE IN CONNECTION WITH CURRENT LOSS RATE AND STORED ENERGY!”)

6.1 Current loss due to the total Tuminosity

The current loss in s™! is given by
BLNO
1dr _ op
Ta&E - KTwRT

with
k = == = 7.6446 107'2 [An] ,

N is the number of intersections,
L is the luminosity [ m=2s-'] ,

Opp is the total proton-proton cross-section [m?] .

In practical cases, the current loss is very often given in ppm min~! so that the

formula becomes

BLNOG
1dl _ —
T = 4.5868 10 ——R—I—PB.

For the ISR: using R, N and Opp given in Table 2, the current loss is, in s7?,

TE - L6673 10z BL
and, in ppm min~!,

1dI _ ,-54 BL

Ta - 10 I

6.2 Current loss due to the nuclear scattering on the residual gas

1

The current loss in s™* is given by

1dl _
Td - ©™s %%,N °

onN is the total nuclear cross-section for protons on nitrogen [mz] ,
b

Nys is the equivalent density of nitrogen atoms for nuclear scattering [mfa] .
The atom density s is related to the N, equivalent nuclear scattering pressure PNS
[Torr] by (see Section 4.1)
PNs

s = KN

where:
kN, = 1.93024 102° [m™® K Torr™'],
k 1is explicitly given in Section 4.1,

Na is the number of atoms in the N, molecules, i.e. Na =2,
T is the temperature of the residual gas [K] .

The pressure PNS is the pressure of nitrogen giving the same beam losses due to
nuclear scattering as the actual residual gas.

For a mixture of different gases, the expression of PNS is




P = P. o_ .
NS Zon’N ( i n,]) ’

i is numbering the gases in the mixture,
j is numbering the atoms in a molecule of the ith gas. If there are m identical atoms B
in a molecule, the summation on j should include all of them and can be replaced by

mo_ o,
n,B
Pi is the pressure of the ith gas [Torr] ,
%n, j is the total nuclear cross-section for protons on the ith atom [m2] .
’

For the ISR: using 9N given in Table 9 and T = 300 K, the current loss is, in s™!,
b

&

1 2
T 7.3298 10 PN

al

t S

: s -1
and, in ppm min™ ",

14dI _ 10
1% ° 4.3979 10 PNS

The values of o, ; at the ISR energies are given in Table 9 for different
b

atoms. PNS is computed by the ISR control computer according to the above

formula. For the ISR residual-gas composition, PNS is given by

Pyg = 0.37 Pg ,
Pg being the gauge pressure [Torr] .

6.3 Stored energy in the beam

The total energy stored in a particle beam is given by

- w L cp
Es 10 s 8

rev

b

frev is the revolution frequency [5'3 (Section 3.3),

Es is the stored energy [s].
For the ISR: B is given in Table 5 for the standard energies and the value of the revolu-

tion frequency fz

Tev for particles travelling at the speed of light is given
in Table 2.
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FORMULAE IN CONNECTION WITH BEAM BLOW-UP BY SCATTERING AND
BEAM DAMPING BY STOCHASTIC COOLING!7>18,19,20,21,22)

Symbols frequently used in this chapter

o r.m.s. value of the radial or vertical beam dimension [m]

W stack width [m]

Ey transverse emittance as defined in Section 1.4 [m rad]

Ep,x average value of the horizontal momentum compaction as defined
in Section 1.1 [m]

E,  rest energy of proton [Gev]

Ee rest energy of electron [GeV]

7.1 Multiple scattering effect on transverse beam dimensions

The rate of fractional r.m.s. beam dimension increase [s™'] due to multiple scattering

in the residual gas is given by

1 do B
—_— = k
at 2 Ms s
O'y )s) E}’
where:
E 2
(S - -
k = 4n® (7;> rlc Gy = 1.08543 107%° [(Gev/c)? m’s™'],
and

[Es
s = 14y Ty
y 2 T

Gy is the absolute gas factor for the nitrogen atom (Table 1). This factor is given

for any atom j by
- 3.836 10"
Gj Zj n =7
(Aj Z5)

Z. 1is the charge of the atom j (Z = 7 for N),
A. 1is the atomic number of the atom j (A = 14 for N),
g is the equivalent density of nitrogen atoms for multiple scattering [m™%] .

The atom density g is related to the N, equivalent multiple scattering pressure PMB
[Torr] by (see Section 4.1)
P

_ MS
= kN
where:

kN, = 1.93024 10°° [m™® K Torr '] ,

k 1is explicitly given in Section 4.1,
Na is the number of atoms in the N, molecules, i.e. Na =2,
T 1is the temperature of the residual gas [K] .
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The pressure PMS is the pressure of nitrogen giving the same multiple scattering
effect as the actual residual gas. For a mixture of different gases, the expression of
PMS is

_ 1
Pys '@Z(Pi ZGJ-)’
i j

i is numbering the gases in the mixture,
j is numbering the atoms in a molecule of the ith gas. If there are m identical atoms B

in a molecule, the summation on j should include all of them and can be replaced by mGB,
P. is the pressure of the ith gas [Torr] s
G. is the absolute gas factor for the jth atom. The values of Gj are given in Table 1 for

different atoms.

Particle losses on an aperture limit can be calculated knowing the rate of change of
the standard deviations of the particle distributions and knowing the form of these
distributions. Frequently, a Gaussian distribution is chosen for the vertical plane and a
rectangular distribution with Gaussian tails is chosen for the horizontal plane.

Note : For two vertically centred beams with the same Gaussian vertical distribution and
colliding vertically at zero angle, the effective height is related to the emittance

by
heff - qEz Bz,I

For the ISR: using the relation between g and PMS with T = 300 K, the rate of fractional
standard deviation increase [s~!]is

do B.
1 _ y
——7&1 = 0.698380 o P

Uy y MS
Table 2 gives the normalized emittance values. The values of B_ are given for
different working conditions in Table 3. PMS is calculated by the ISR control
computer according to the above formula. For the ISR residual-gas composition,

PMS is given by

Pyg = 020 P,

Pg being the gauge pressure [Torr] .

7.2 Intra-beam scattering effect on vertical beam dimension

This formula, giving the rate of vertical dimension change, takes into account the
angular distribution of collision momenta inside a wide and uniform stack!®):

do I84/B.B o} a
éL'7ﬁ§ =k s a/§ Z, h (OP,Z ’ Op,s onC
z wp EZ EX P,X P,X
where:
2 E Y
k = 4% r}?)(%’) = 4.2201 107'® [(GeV/c)® m? A7} s71].
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The rate of fractional standard deviation change is given in s™'.

The parameters appearing in the function F; and the variable C are defined as follows:

?p,z - 9,Bx _ ‘/ Bsz
%,x OxBz B.Ex
o B
Gp,s = X valid for w >> G%
p,x Y Ox
E/*p?
C = k, = R
with ’
1 E B
Oy = 5 h%FX (see also Section 1.6),
and
k, = % = 2.2597 10'¢ [Gev'Z m '] .
8m E° r
o p

The function F; is given in Fig. 5.

This formula contains the assumption that Ex changes only slowly with time, that the
current losses remain small and that the rate of the vertical dimension change does not
exceed ~0.15 h™!.

The note in Section 7.1 concerning the effective height also applies here.

For the ISR: the values of B and Eb X
b

are given for standard energies in Table 5 and the normalized emittance is

are given in Table 3. The relativistic parameters

given in Table 2.

7.3 Intra-beam scattering effect. on transverse beam dimensions and momentum spread

The theory referred to in this section!®) takes into account the energy spread within
the beam and the linear part of the dependence of the scattering angle on the coordinates
of the betatron oscillations. It then gives not only the vertical dimension change but
also the horizontal blow-up and the increase in momentum spread [s~!] :

do
1 z _ A
5;‘7ﬁ; = 7-F2(a,b,c)
do
1 X _ A 11 1 .01 .
T & 2 F2<I’ B’ k) TP F2<1’ @ J)
X E B
XX
1 +
w2
1 d(ap/p) _ .1 _ 1
m dt - nAFZ 1, a,J 1 EE ’
1+ XX
w2

n is equal to 3 and 1 for bunched and unbunched beams, respectively.
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Fig. 5 TFunction F; for estimating the intra-beam scattering effect

(formula in Section 7.2)

The parameters a, b, c, i, j and k appearing in the function F, and the variable A

are defined as follows:
= a 2
Y "Ez up,x‘,ExBx +w
’

a
W VEBSB,
B.E
b o= 4 X2,
BB
k, p E;/h
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W’Ek
i =
n 2
YO VEB W
= k Bw xBx (EE)I/“
J L E E + wz YA ?
P,X ¥V XX
k E 1
- X /
k B P 7 (ER) " ,
Ia X
A = k2 ’-O—E,— ,
p' wEE
X Z
where:
1 -1/
k = _ . 8 1/2
1 \/_; ~/ 2.41886 10° [m™ /%] ,
P
K = & v By = 7.15851 1077 [w? Gev* AT s7]

The function F,(a,b,c) cannot be evaluated analytically and it is necessary to use the
computer calculated curves in Figs. 6 and 7. To reduce the range of numerical values for
F,, one can use the following relations:

Fz(a’b,c) = Fz(b,a,c)
1 1 b c 1 1 a c\ _
FZ (a,b,c) + 3_2 Fz(a, '5, '5) + B“z‘ FZ(B, E’ 'B) = 0

The formula in Section 7.3 for the vertical dimension is not directly comparable in
its algebraic form with the preceeding formula in Section 7.2, because the functions F, and
F, are not defined in the same way. Nevertheless, we can say that both these formulae
(7.2 and 7.3) agree within ~15 % for the vertical dimension change.

The note in Section 7.1 concerning the effective height also applies here.

It should be noted that there is a mistake of a factor of 2 in the reference paperlg)
and this is the reason why we have taken the factor A/2 instead of A in the formulae of
Section 7.3. The two first relations give the rate of change of the standard deviations
as in Section 7.1 and the third one gives the momentum spread increase. Therefore, it is
possible to calculate the losses of particles in a limited aperture provided the distribu-

tions are known.

For the ISR: the values of E&, B, 1 and Eb x are given in Table 3. The relativistic para-
2 >
meters are given for standard energies in Table 5 and the emittance is given

in Table 2.



- 38 -

104+ C
T i#
T T
L 1
T Function F, (a,b,c) T
T Parameters : b; ¢ T
103+ B
T r
1 " 0.2; 10
" 02:103
0.2;102
1 -
05;10*
102—__— . 05;10°
1 [ 05; 102
T Il
{_ L
10 + L
5+ B
4 |
2+ L
| + } -+ } e % + { f . -
0 02 0.4 06 08 10 a

Fig. 6 Function F, for estimating the intra-beam scattering effect

(Formula in Section 7.3)
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Fig. 7 Continuation of Fig. 6

7.4 Rate of stochastic cooling of momentum spread

A horizontal pick-up system is used to detect the radial position error of the centre
of gravity of a short sample of particles with respect to a nominal radial position. This
error is interpreted as an error in momentum with respect to the nominal momentum. A feed-
back system corrects a fraction g of this error further downstream as the sample passes a
wide-band cavity, which accelerates or decelerates it accordingly.

The cooling rate for momentum spread is?!) [s=*]

2W 2 B E 2
Tp a2 S8 25> <<Ap?>>
p,x T p?

where:

Bx and o x are taken at the pick-up position,
W is the frequency bandwidth of the feedback system [s~ 1,
is the number of particles in the ring,

f

is the fraction of observed momentum error corrected per passage through
the system,



i)

ii)

i1i)

and,

7.5
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Ap is the momentum deviation from the nominal value of the single particle[CeV/c],

<Ap> is the average momentum deviation in a sample,

<<Ap?>> is the mean square momentum deviation over particles in many samples, i.e.
over all particles in the machine,

v is the r.m.s. electronic noise of the amplifier system, expressed at the pick-
up level as a fictitious momentum error of the sample,

) is the nominal momentum [GeV/c] .

Some other interesting parameters can be defined:

Equivalent length of a sample [m]

_c1
“s“?W}'
Number of particles in a sample
_ 1 I
N = Zemw. -

f

Optimum gain g5 which permits the fastest cooling

g _ 1
° 1+ B Bx sV
pe?  SSOpP>> <<ap®>>
P,X p2

when the ratio of the noise power to the signal power is large

<<Ap2>>
———J%——— .
AV

R

8o

Fraction of error corrected in a momentum cooling system

The momentum cooling fraction g (Section 7.4) associated with an available power P [W]

in the wide-band cavity is

P
g = 8 P
° 'Ptot

g is the optimum gain (Section 7.4),
Piot is the total power required for the optimum gain g, [w]. For a large ratio of the
noise power to the signal power, Ptot is given by
’ B go + gé ((:Ap'cot)2
tot 12 NS RC e ’
where:
NS is the number of particles in a sample (Section 7.4),

R.  is the impedance of the wide-band cavity [2]
Aptot is the total momentum width of the beam for a rectangular distribution [eV/c] .
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7.6 Noise to signal ratio in a momentum cooling system

The ratio of the noise power to the signal power (Section 7.4) is given by the dif-
ference signal current from the horizontal pick-up and by the electronic noise of the am-
plifier system

IZ
V2 v

<<Ap?>> I;c

b

L, is the noise current of the amplifier system [A],

ISC is the signal current due to the longitudinal Schottky noise [A] .

These currents are given by

—
1

sc \/Ze I Wf

1 n/1o

Iy

- is the frequency bandwidth of the feedback system [s‘l],
is the impedance of the pick-up (o],

is the constant of Boltzmann [eV K™!] (Table 1),

is the absolute temperature [K] ,

=
=] HU:’W'U;UH‘

is the noise figure [dB] .

7.7 Horizontal betatron oscillation damping in a momentum cooling system

The momentum cooling system described in Section 7.4 can also damp the horizontal
betatron oscillations. The resulting cooling rate for the radial amplitude x is?!)

2
LW g 4 X(P.U.)<—<Alg—2—>—>
— = — - - — k]
T, N gy cos (Au) - |1+ + B .(P.U.) E, »

where:

I CE) 6, (P.U)
X ap,x(P.U.) Bx(gap) ’

g, N and W, are defined in Section 7.4, as well as <<Ap?>>/p?,

Aux is the horizontal phase shift from the pick-up to the cavity gap,

Ky is the ratio of the noise power to the signal power, in which the signal current
is the pick-up current due to horizontal betatron oscillations,

P.U. and gap mentioned in brackets indicate that the functions have to be taken at
the pick-up and cavity positions, respectively.

The horizontal stochastic cooling is maximum if AT is equal to an odd number of half
betatron wavelength, but appears as soon as cos (Aux) < 0 and 8y | cos (Aux)[ is larger
than the second order term.
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7.8 Rate of stochastic cooling of vertical betatron oscillations

A wide-band vertical difference pick-up is used to observe vertical errors of the
centre of gravity of a short longitudinal sample of particles. A feedback system corrects
a fraction g, of this error further downstream as the sample passes a fast vertical kicker.

Assuming that the vertical statistical error <z> of the sample at any passage through
the system is insignificantly reduced by the correction done during previous passages, the
cooling rate for vertical betatron oscillations is?1) [s1]

W, g2
1 _ °f 4
T T W[gz'T(“Kz)] ,

N and Wf are defined in Section 7.4,

K, is the ratio of the white noise power to the signal power, in which the signal current
is the pick-up current due to vertical betatron oscillations,

g, is the fraction of observed vertical error corrected per passage through the system.

The parameters Qs and Ns can be defined as in Section 7.4, but the optimum gain per-
mitting the fastest cooling is now given by

7.9 Necessary power for optimum vertical cooling

It was shown in Section 7.8 that an optimum gain g o exists giving the highest cool-
b

ing rate. The total power Pz [W] on the two pick-up plates required for obtaining

tot
b
is given for a large ratio of the noise power to the signal power by

g o ( 0,(P.U.) Bd pc )2
2 = 2

z,tot 8R_N @;fi?é;fﬁfﬁ?i %6

P s

82,0

g o is given in Section 7.8,

b

NS is defined in Section 7.4,

Rp is the line impedance for the plates [Q] ,

GZ(P.U.)is the r.m.s. value of the beam height (Section 1.6) at the pick-up [m] ,
BZ(P.U.)and BZ(K) are the vertical betatron amplitude functions at the pick-up and at the
kicker, respectively [m] ,
is the vertical spacing of the electrodes [m] ,
is the nominal beam momentum [eV/c] s
% is the length of the vertical kicker [m] .
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7.10 Noise to signal ratio in a vertical cooling system

This ratio is given by the electronic noise of the amplifier system to the difference
signal current from the vertical pick-up

2
ISC

The currenIsIv and ISC are defined in Section 7.6.

FORMULAE IN CONNECTION WITH TUNE SHIFTS23,2%,25,26,27,28)

Symbols frequently used in this chapter

E0 rest energy of proton [GeV]

a half-width of a small beam or single pulse [m]

b half-height of a small beam or single pulse [m]

w, /, half-width of a large stacked beam [m]

half-height of a ferromagnetic gap or radius of a circular yoke [m]

h half-height of the gap between conducting plates or of a pipe [m]

v half-width of a conducting pipe [m]

Y1 general transverse coordinate of the centre-of-mass of the whole beam [m]
Ey transverse component of the electrostatic field fv m')

e,  Ppermittivity of free space [as v mt]

A.  line density of electrical charges [As m']

Bf bunching factor (Section 3.12)
n neutralization factor (Section 4.8)

X horizontal position of a particle which undergoes a given tune shift
w.r.t. the centre of the perturbing beam [m]

8.1 Incoherent tune shift due to direct space charge effects

The tune shift considered here is that due to direct space charge fields of a single
beam and experienced by a particle sitting in the beam itself

. RITB €
Aler = -k —Y .j% - _Q%X ,
Y N Y Bf Y € b
where:
2T
k = -2 = 6.30062 107° [a2] .

In the case of a bunched beam, this expression gives the maximum incoherent tune shift
due to direct space charge effects, experienced by the particles set at the bunch centre.
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The geometric coefficient R y associated with direct space charge fields is defined
b4

by
2
™ e, b EEX
0,y ZAC y
E_is the electrostatic field component due to the beam itself [V m"l],
AC is the line density of charges [As m Y related to the averaged current I in a pulse via
(Section 3.11)

_ I
AC = &

For the ISR: this formula applies either to a single pulse for which Bf is of the order of
0.1 or to a stacked beam where Bf = 1. If the neutralization is negligible
(bunched beam), the change of the betatron frequency due to direct space charge
effects is rather small, since it is proportional to 1/y®. For large neutral-
ization, the direct space charge effect can become of the same order of mag-

nitude as the indirect effect (Section 8.2).

8.2 Tune shifts due to indirect space charge effects

The tune shifts considered here are those due to the presence of material boundaries
around the beam excluding the direct space charge fields. It has become customary to
separate the expressions for the tune shift associated with the oscillation of one single
particle sitting in the perturbing beam and for the tune shifts associated with the oscil-
lation of the whole beam. The first one is the so-called incoherent tune shift and the
second one the coherent tune shift.

The incoherent tune shift (affecting, for instance, the oscillation frequency of a
particle inside a stack) is

(1 (1)
inc _ LRI SY (D) (@) 5, 1 g () f2y
8" - ‘kw[ ) Cfl)—ﬁfl<1*'§f‘ez_y2>“'“e) P2 A ]

The coherent tune shift valid for penetrating alternating magnetic fields at low fre-
quency (affecting, for instance, the closed orbits) is

(1) : (1)
. . E ; iy &
coh _ _ RL g(1) (D) 2y, 1 - z(1) (3) 22,y
AQY By [zl: BY = h? <1 By 87 Yz) (-me) ; 8 C2 g’ ] )

The coherent tune shift valid for non-penetrating alternating magnetic fields at high
frequency (affecting, for instance, the oscillation frequency of a kicked stack) is

(1) (1)
iy © i i . ., €
coh -k BLIYD gD @ Ll 50 (D) %,
RN kBY{zi: fy " T [El,y Sy B 67 yz](l ne) "Zi B, Ca _éfz‘}

where k is defired in Section 8.1.
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In the case of a bunched beam, these expressions give the maximum tune shifts due to
indirect space charge effects, experienced by the particles set at the bunch centre.

The summations apply to the different possible geometries in the material boundaries,
which may appear on the circumference of the machine. In each of these three expressions,
the first summation concerns the electrostatic image effects (bottom index for C, € and §
equal to 1) and the second summation concerns the electromagnetic image effects (bottom
index for C, € and £ equal to 2). The interdependence between the possible geometries con-
sidered in the literature, the material and the coefficients introduced here is summarized
in the table below.

Index i Geometry Material Coefficients
1 parallel plates electrostatic Cgl) H ESI; H g};
b b
ferromagnetic Cgl) o) ()

b -
2,y 2,y

e ————— G —_———— ———— R

2 circular electrostatic C(2) . e(z) . g(z)
(vacuum pipe) 1 * T,y 2 "1,y
ferromagnetic c@ . (). 5(2)
(magnet yoke) 2 7 T2y’ Cayy
3 elliptical electrostatic C(a) 5 €(3) 5 6(3)

Cgi) and Cgi) are the fractions of the circumference occupied by an electrostatic and a
_ ferromagnetic material in the ith geometry, respectively (see table above),
E£1) is the average value Qf the betatron amplitude function in the fraction of the circum-
ference defined by c(®) [m].

The general definitions of the geometric coefficients €, y and €, ¥’ €, y and &, y
associated with indirect space charge fields are ’ ’ ’ ’
2
1,y AC y y, =0
2
2,y AcB 3}’y1=0
me_ h® | 9E  OE
Gy T o | T
sY c y Y1 Y=
2
z’y )\CB ay aYl y = yl

Ey and BZ are the electromagnetic components due to the material surrounding the beam
[vm?] and [T],

A, is the line density of charges given in Section 8.1 [As m1] .
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For the ISR: the incoherent tune shift is the most important one and has to be compensated
in order to avoid the disturbing resonances (Chapter 10). The direct space
charge contribution can be neglected, since it appears that 1/y? = Ne in the
ISR at 26 GeV/c. The incoherent horizontal tune shifts are given in Fig. 8
for off-centred beams and the 1image space terms have been calculated with
the following values:

a = 0.0025m ¢ = c® = o.62 ne - 0.026 m
B, = 16.854m c(2) = 0.38 v = 0.08 m
I = 1A By = 1 hCITC = 0.08 m
y = 20 g = 0.05m

For obtaining the horizontal tune shift for other values of the parameters v,
Ex and I, it is sufficient to scale the curves of Fig. 8 in agreement with
the formula. The ratio of the horizontal to the vertical tune shift is
approximately given by

inc =
Lk

inc =
AQ, B,

For a quick estimation of the incoherent tune shifts it is also possible to
use the simple empirical formulae deduced from measurements performed at the

ISR:
agine - 0.04 1[1- 0.2y - Xl)z]
X Y w
1/2
inc _ _ inc
AQZ = 1.25 AQX .

8.3 Geometric coefficients for the tune shifts due to direct fields

This concerns the coefficient € y introduced in Section 8.1, and two cases can be
b
considered:

a) Line charge or single pulse of elliptic cross-section and Gaussian distribution in
both dimensions:

b2 §b 2x? X bx P 2x2
EO,X = 22-35 exp (— Zz——)- 1+ /Z—TI' I [erf <\/2— 55)‘ erf(/Z.E)]exp (-;—2—>$

b 2x2
€,z ~ €o0,x ta XP ( a2 )’
where:
€2 = b>-a?>>0, aandb being 2 times the r.m.s. beam dimensions.

At the pulse centre (x = 0), this expression simply becomes
b2
o,x T a@+nb

_ b
€0,z a+b
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Tune shift for
beam centre at:

/

L1073 Y~ 415 mm

I e
7/ % mn
22

32.5mm
’ 27.5 mm

22.5 mm

17.5 mm

125 mm

7.5 mm

2.5 mm

SN

Fig. 8

+——+ f t } —
20 30 40 50 60
Average radial position <x> (mm)

+

Incoherent tune shifts excited by image forces in the ISR.

(Calculated for vy = 20, I = 1 A, stack width 5 mm,
elliptic chamber over 62 7 of ring with half-height 26 mm
and half-width 80 mm, circular chamber over 38 7 of ring
with radius 80 mm, parallel pole pieces over 62 7 of ring
with half-separation 50 mm.)
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b)  Stacked beam with a uniform distribution and Gaussian tails in the horizontal direc-
tion and with a Gaussian profile in the vertical direction:

X+ W 2 X+ W X+ W
Sox = gz_—wlb/zze {exp (/2_ —= 1/2> [erf (/Z%— 8__1/2>_erf (/Z_——g 1/2>]
- 2 X -w X -w
- exp <\/2_ i(—TWI—/—z) [erf </2_ % *’—E_l/-g')— erf (/2— '——gl—/z>]}

ﬁ_ b [erf (/2— :‘EZ_Z_) - erf (/2_ -).(-—-—W]'i)] s

M
"
|

m

+

$ $

§ is the width of the horizontal tails [m], i.e. twice the standard deviation of the
tails,and b is twice the r.m.s. vertical beam dimension.

At the beam centre, this expression becomes

2

fox ~ “zi/’}—iﬁl’b/’:'é exp (/2‘ W1€/z> [erf (/2—% w1€/2> - erf (,/z“wle/z)]
€0,2 = T fox " éﬁ ert (‘/2_ WIcS/Z) ’

and at the beam edge (x = w1/z)
€ox " I‘/;z‘ wlb/zze exp<2‘/5;”1/2)2 [erf <%) - erf <E/—2—_;M—2~)]
S0z = " foxt gz‘wlb/z erf (2) .

Typical curves for e and €

. . I .
0,x 2 corresponding to stacks with b/w, /2 7/12 are given

b

in Fig. 9.
8.4 Geometric coefficients for the tune shifts due to indirect fields

in a geometry with horizontal parallel plates

This concerns the coefficients e(l) , e(l)
1,y 2,Y

, E(l) and «E(l) introduced in the table of
1 ’y 2 ’y
Section 8.2.

For horizontal parallel plates, two coefficients vanish and some relations between
the coefficients exist

I
- o
) - o)
L)L)

2,2 2,X
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€oy
0.3 +
e0,z
1/3
e N\
12
112 \
0.2 +
0
1124
S o ‘
W12
1/6
13 /
1/3
0.1 +
1/6
Eo'x
‘ ‘\\\\ 1/12
0 f } -
1 2 3 X
Yz
l
13 \‘
16 ‘
-0 112
1724
0
Fig. 9 Geometric coefficients for the tune shifts due to direct fields

(Calculated for stacks having the following distributions:

horizontal uniform (Wl/z) with tails (8),

vertical Gaussian (b), b/wlﬁz = 7/12.)
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Using the parameters

gl - T
-z—h- and Ay = zg >
the expressions for the three coefficients, which are independent, are given below

for two different cases with the beam vertically centred (z; = 0):

o =

a) Line-charge or_single pulse_at X;:

1 _ ch [0, (x-x;)] he
‘1,2 T B shE[0, 3 X,)] | Z(x-x,)%
e(l) - g2 1T2

2,2 2(x-x,)% "~ 8 sh?[o, (xx,)]’

.n,2

16 ch*[} a,(x-x;)]

el) -

At the pulse location (x = Xx,), these expressions simply become

)

NORNNE O N R O R

.,
.
N
4>|=u
[0}
.
™
N
.
N
[3S]
.
.,
-
N
==
(o)

b)  Flat_stacked beam centred on Xx;:

L) _ _mh chfa,; (x-x,)] sh(oyw, /,) 1 ”
- - =
1,z 4w s, sh®[o; (x-x;)] - shz(oclwl/z) 2 x=x,)? - wzl/2 ’
E:(1) _ 1 g? g sh(Zotzwl/z)
2,2 2 (x-x)? - wf/z 8w, /, sh? [az(x—xl)]— sh? (azwl/z) ’
E(l) _ _mh Sh(alwl/z)
1,2 4w1/2 chloy (x-x,)]+ Ch(Ohwl/z)
At the beam centre (x = Xx;), these expressions become
8(1) _ _h? 1- %Wy /2 ]
1,2 zwi/2 sh(alwl/j
) o 8 oy coth(aw , ) -1]
2,2 zwf/z 271/2 271/2 ’

E(1) 72 th Y1 /2
1,2 801.1W1/2 2 ’

and at the beam edges (x = x, * W1/z)

L) h? [1_ 20,y /, ]
1,2 8w§/2 Sh(2°‘1w1/2)

-

2

82(11 - 8_%_ (20,0, /, coth(Zo,w, /,) -1},
’ Wi /2

(1) . 2

gl,Z h léoclwl/2 th (a,%/5) -
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In all these expressions, h and g are the half-distances between the two conducting
and ferromagnetic plates, respectively [m] .

Typical curves for efl

Fig. 10.

1) . . . . .
’g and 85’2 with different ratios wl/z/h and wl/z/g are given in

For the ISR: since the main magnets are not pure dipoles but are gradient magnets, the
above formulae for eglg do not apply exactly. However, a correction factor
b
has been estimated?®) for a wedge-shaped gap and a single pulse:

(+5)(#)]

The negative sign applies to magnets which have a gap open towards the out-

(1) _ 6 | gB
€,z (wedge gap) = €, .2 [1 t o I%T

side of the machine and a return yoke on the inside (so-called D-units).

The positive sign applies to magnets which have a gap open towards the inside
of the machine and a return yoke on the outside (so-called F-units). Since
in the ISR there are en equal number of both types of magnets, the linear
correction term cancels and only the quadratic correction term, which is much
smaller, has to be considered.

g is the half gap [m] at the pulse position and G is the magnet gradient[Tm ] .
The values of G/B = - n/p for the ISR are given in Table 2.

8.5 Geometric coefficients for the tune shifts due to indirect fields

in a circular geometry

This concerns the coefficients efz) s 552; and EEZ; introduced in the table of

Section 8.2 (£§2; is not given in the iiterat&re).
b

In this geometry, there are two relations between the coefficients:

NO RN Y
l’Z 1’
- e

u is the constant relative permeability of a circular magnetic yoke,

8522(8) means that g must replace h in the expression of 552%-
’ 2

The expressions of the three independent coefficients are given below for two different
cases, the beam being vertically centred (z, = 0):

a) Line-charge or_single pulse at X;:

(2) _ _h* X
€1,z 2 (h? - xx;)%
ORI ¢ h? - x3

1,z 2 (h? - x)2
ORI N .
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Cg)

(1)

Fig. 10  Geometric coefficients €

1 .
and e( ) in a
2,2

’ t
geometry with horizontal parallel plates
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At the pulse location (x = x,), these expressions becore

2

@ o R x
1,z 2 (hz _ Xf)
E(z) = E-———-——-—l
Z p? - x? ’
() nt _hiexi
1,X 2 (h2 - X§)2 ’

and for the pulse at the chamber centre (x = x; = 0)

() . () g,

€ b
1,z 1,x

1
€l - e T T

b) Flat stacked beam centred on Xx;:

2 2 2
81(2)2= —h_2<1+hT+whx£nD>’
’ 2x 1/2
2 2 _ 2 2
552) = -—}%<l+hcx +whx9,nD>,
sz 2x 1/2
2 2, .2 2
) - -—h—2<1+———hgx +whxznn),
X 2x 1/2

where:

Cc = h—z[(hz—xxl)z—wf/ xz],

2

2
h TXK Wy, X

2
h T XXt W, X

At the chamber centre (x = 0), these expressions become

2 2
€(2) - 5x) * Yi/2
1,2 6 h2 ’

2 2
() _ 1 1_3"1*”1/2
2 T 2 3nz )

2 2
g(z) = 1 1 + _?Lwl/z.
Lx T2 3n?

In all these expressions, h and g are the radii of the electrostatic and ferromagnetic
boundaries, respectively [m] .

The parameter el( ) gives all the other parameters e by virtue of the above relations.

(2)

For stacks in a c1rcular pipe, typical curves for € 2 with different ratios w 1/2 /h

and two positions of the stack (x, =0 and x, =0.2 h) are given in Figs. 11 and 12.

For the ISR: the curves of Figs. 11 and 12 can directly be used when the stacked beam is
either centred by decreasing the magnetic field or left at the position ob-
tained after stacking, i.e. x;/h=0.2.



El,z
4 centred beam in x and z
-0.05
beam|region
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7 /
) L Z
\%/0- /
0
f t - —t t +— } — ——
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 x
h
Fig. 11  Geometric coefficient 652; in a circular geometry for centred beams
(2)
1,z
w
12 _
e 0.40
-0.10
beam centred in z
and off-centred in x
#..
0.267
-0.05 +
beam region 0.20
// 0.16
o
/ 0
Xy
Y 0.2
} t t —— f } t o
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 06 0.8 X
h
Fig. 12  Geometric coefficient 6(2) in a circular geometry for off-centred beams

bl
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8.6 Geometric coefficients for the tune shifts due to indirect fields

in an elliptical geometry

This concerns the coefficients e( ; and 5( ; introduced in the table of Section 8.2
(a magnetic yoke of elliptical section having never been considered in the literature).

In this geometry, the following relation between the coefficients exists:

(3) - (3)

1,2 1,x

The expressions of the three remaining coefficients are very complex and are given
here only for a line-charge or single pulse, at x; on the major axis inside focal points
(x| <d, z, = 0):

() _ h? (21()2 DD 1-88 D 1 ]
A

™
1]

F2 (S-$,)% 1F® S-S,  (x-x,)°

NONN (§>_DD_ IS D
1,2 2 {\n/ (s-s)%\ F FF,) nF* S-S, |’

_ s )
E(a) - h_Z (&)2 1 cc 1-k SSl - DD 1 SSI . % CD1
1 x 2 ™) (5-S,)*\ ' FF ' k3 s-s, |’

1

where:

S, C and D are the Jacobian elliptic functions’>®) sn, cn and dn of argument u

(respectively u, for subscript 1) with

_ 2K X

U(l) ? arC51nT N

andd = v - h?

K(k) is the complete elliptic integral of the first kind’>'¢) and the modulus k is
determined by the algebraic equation

where the "nome" q is defined by

q = exp (-7K'/K) ,

K' = K(k') is the complete elliptic integral of the complementary modulus
k' = V1-K* ,

F and F, are defined according to

dz - x2

F (1)

M)

At the pulse location coinciding with the chamber centre (x = x;, = 0), these expres-

sions become
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2 B 2
- g 6 -]
(3) _ h* [f2x\
B T L(?) ‘1] ’

(0 o ox [ (e 2]
1,X 4d2 L m

with the same definitions as above.

For stacked beams of finite width, it is not possible to integrate analytically the
expressions valid for a line-charge. However, the integrals have been evaluated numeric-
ally by computer?®) for the parameter e( ; For stacks in an elliptical pipe (v/h = 3),
typical curves for e( l with different ratlos W /2 /v and two positions of the stack

(x, = 0and x; = 0.2 v) are given in Figs. 13 and 14.

For the ISR: the curves of Figs. 13 and 14 can be used directly, since the aspect ratio
v/h of the elliptical chamber is very close to 3 and since the stacked beam

is either centred by decreasing the magnetic field or left at the position
obtained after stacking, i.e. x;/v =0.2.

8.7 Tune shift of a particle crossing a cylindrical coasting beam

A particle crossing with a horizontal angle ¥, an azimuthally uniform, Gaussian beam
of circular cross-section undergoes a linear tune shift per intersection in the plane (y,s)
ofze)

Abe = kbbl+6182 Izzey’IdJ ( =2d ;w:By,I SiIl\U) ,
v1 B,8,P, Oy, 1 y B %, ,1
where:
bb T Eo
K = P 9 = 2.38511 10"°[A"! Gev/c] ,
4t e c?
_ cos? tp 'c2 +1 . w? t? _1 w? t? '
Tx(Es) f 3( 1+ t% cos® ¥ P12 (1 + t2 cos? ) lpdt,
1 fera [ 1 w? t2 § 4
Jw = — [E22)1-exp]|-5 t
2(6w) Tw? t? i R ) (1 + t? cos? w)] ’

Index 1 refers to the perturbed particle,

Index 2 refers to the perturbing beam,

B I is the minimum of the betatron amplitude function which is assumed to be at the
point where the particle crosses the beam centre [m]. The variation of B is
quadratic with the longitudinal coordinate and Bx = BZ since the beam is c1rc:ular.
Furthermore, the functions By associated with the particle and with the beam are
assumed to be equal,

0}'2,1 is the r.m.s. value of the beam 2 radius, taken at the point where B _ is
minimum [m],

d  is the interaction length [m],

v is the horizontal colliding angle [rad] ,
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Fig. 13 Geometric coefficient 8(3) in an
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elliptical geometry for centred beams
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Jx and J, are integrals, which are given in Figs. 15 and 16 for different values of
the parameters ¢ and w, and for cos ¢y = 1.

If the crossing angle is vertical, the expression for AQ‘;}: remains valid, provided
that the definitions of JX and JZ are exchanged.

0 C

Fig. 15 1Integral Jx (z,w) for estimation
of particle-beam tune shifts

(formula in Section 8.7)
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|
T
1
Fig. 16  Integral J, (L,w) for estimation of particle-beam

tune shifts (formula in Section 8.7)

8.8 Tune shift of a particle crossing a coasting or bunched beam at zero angle

A particle crossing with zero angle a strong beam of any cross-section undergoes a
linear tune shift per intersection in the plane (y,s) of

d
1+ €
AQ];,': - pbb 1T Bife /B I, X ds

Bl szl 1 a2 ’
Z2
kbb is given in Section 8.7, as well as the meaning of the indices 1 and 2,
d  is the interaction length [m] ,

B is the betatron amplitude function associated with the particle inside the interaction

Y1
region [m] ,
o,, is the r.m.s. value of the beam 2 height [m],
€ y is the geometric coefficient for direct fields. It is explicitly given in Section 8.3
’

for a Gaussian pulse of elliptic cross-section and for a stacked beam of uniform dis-
tribution with tails in the horizontal direction and of Gaussian profile in the ver-
tical direction. The variable x used in Section 8.3 represents in this case the
radial distance of the particle from the strong beam centre. All the parameters a, b,
X, Wy, and § appearing in Section 8.3 can be functions of the coordinate s.
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In the special case where the functions By s By and the radial position x of the
1 2
particle are constant through the interaction region, the linear tune shift per intersec-
tion for an either coasting or bunched beam becomes

d coasting beam

bb _ Zkbb 1+ B182 BYL,I 12 Eo,y

A =
QY: B1B21y a2
Zo ,I

2B R
EF—BZ _I\T bunched beam

B}’l 1 is the betatron amplitude function associated with the particle in the crossing
b

region [m] ,
022 I is the r.m.s. value of the strong beam height in the crossing region [m] ,

s

M is the number of bunches in the strong beam.

For a strong bunched beam, it has been assumed that the perturbed particle was syn-
chronous with the bunches.

If the strong beam has an elliptic cross-section and the particle remains radially
centred w.r.t. the perturbing beam, the expressions given in Section 8.3.a) for x = 0
apply (with the convention a = ZOX’I and b = 202,1) and the relation for AQ]}D}: takes the
more usual form

d coasting beam
B I
bb bb 1 * BiBy Y11 2
A = 2k
QYI B1B2Py OYz’I(cxz’I * 022,1)
2B, m
m M bunched beam
9% 1 is the r.m.s. value of the strong beam width in the crossing region [m] .
22

8.9 Tune shift of a particle crossing a coasting beam at a large angle

For a particle crossing with a relatively large horizontal angle ¢ a circular pulse
of Gaussian transverse distribution, the following condition and approximation apply to
the relations given in Section 8.7:

w(z) >1; cosy=1l ,
2.2 [;_ IR DN/ Uy & B
Jz(g’w»l):w_Z-W[l exp(—z-cw>:|+merf</2_cw>,

w(z) means that w, defined in Section 8.7, has to be taken for y = z.

If, furthermore, the conditions w(z) z(z) >> 1 and w(z) >> z(z) are verified, JZ
tends towards

~ YIm

JZ s—a >

z(z) means that ¢, defined in Section 8.7, has to be taken for y = z.
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Using the last approximation for Jz’ the linear tune shift per intersection of a par-
ticle crossing a coasting beam at a large horizontal angle is

bb _
AQxl =0,
PP = 2/ a0 1T b L2 Pz,
E3 " BBy O, 1 sin § °?
29
kbb is given in Section 8.7 as well as the meaning of the indices 1 and 2,
B, 1 and o, 1 are defined in Section 8.8 and the angle y in Section 8.7.

1? 29
For a stacked beam consisting of a radial succession of circular pulses with Gaussian

transverse distribution, I, represents the total current and o is the r.m.s. value of

Z,,1
the thin dimension of the beam.

It is interesting to note that the octupole terms in the tune shift, seen by an off-
centred particle, are opposed to the linear one given above, so that the total tune shift
seen by the particles of a wide beam is distributed between 0 and AQZb around an average

1
value which is?®)

—bb ~ bb
AQzl,tot = 0.74Q, -

. . . . bb . bb
If the crossing angle y is vertical, the above expression of AQZ1 applies to AQxl’

provided that the parameters By 1 and Oy .1 are used instead of B, 1 and o, 1 AQZl becomes
b s b

equal to zero. ’
For the ISR: the crossing plane is horizontal and the nominal angle y is equal to
0.2578 rad. In agreement with the above formulae, the total vertical

averaged tune shift of a wide beam can be estimated from

“~bb

AQ 2 Py
z, ,tot

= 6.567 10~®
Py 0z,,1

b

while the horizontal tune shift is zero. The measurements made in the ISR

—=bb

with pulses give values of AQ which are close to this theoretical value

Z) ,tOt bb .
(remembering that the linear tune shift AQ . is ~1.43 1arg¢r).

vA
When the Split Field Magnet is set, the crossing angle y changes in inter-
section 4. The values of y and the orbit characteristics in intersection 4
are given in Table 10 for different field levels.

The values of B, 1 are given in Table 3 and the relativistic parameters in
’
Table 5. '

8.10 Tune shift of a particle crossing a bunched beam at a large angle

The conditions and approximations given in Section 8.9 remain valid for a bunched
beam, the sole difference coming from the non-uniform azimuthal distribution of the cur-
rent I,. If the perturbed particle is synchronous with the bunches of the strong beam,
the expressions for the linear tune shifts per intersection can be written as follows:
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Abe -0,
1 B+ 1+B2 L T
Lese 8 A+ g IR siny
bb - .bb L ¥ BBy z1,1
A = — I de
Qzl Z/ZTI k 5132131 O,Z 1 sin ¢ 9,2 >
22
0
k is given in Section 8.7 as well as the meaning of the indices 1 and 2, ’
B, 1 and o, pare defined in Section 8.8 and the angle ¢ in Section 8.7,
1 1>
o is the angular shift of the perturbed particle w.r.t. the bunch centre [rad] ,
w, is the total width of the strong beam[m] ,
I is the azimuthal current distribution inside a bunch of the perturbing beam [A]

2
% (Section 3.10).
If the interaction length is small compared with the bunch length, I ,2 can be taken
as constant in the integration interval A8, so that the integral can be replaced by

Ie’2 A6, where

_ B, Wy
e = <1 +s_1)]?€_sin_¢

FORMULAE IN CONNECTION WITH LINEAR COUPLING3°»31532)

Symbols frequently used in this chapter

C complex coefficient of linear coupling

A distance from a linear coupling resonance
(= Qx + nQZ - p, n and p being integers, n = £ 1)

9.1 Complex coefficients of Tinear coupling

For both sum and difference resonances QX + nQZ =p, (n == 1), which are associated
with a linear coupling of transverse betatron oscillations, a general complex coefficient

. .
1 x % i 1 n

=—-—. BB K+_ = - =]1-=ZM[= - =
. / [t 2)-dm(2 - 2)]

exp {1 [y, - Q) + nu, - Q8 +po)}ao

can be defined:

with the following definitions:

o - LR 9B, 3B,
2Bp\ x oz ’
R
M(e) = EBG >
n = * 1 (depending on the resonance),
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o, is the Twiss parameter (Section 1.1),

K is the phase of the betatron oscillation (Section 1.1),

6 = s/R is the azimuthal angle (Fig. 1),

aBy/ay is the skew gradient in the horizontal or vertical direction [Tm'l] .

For the ISR: using the above formula and taking, for example, the value of o, B , W _ and
: for the 8C working line, it is possible to estimate the effect on the
coupling due to random main magnet tilts

|C| = 10 ¢r.m.s. ’

is the root mean square value of the distributed tilts [rad] .

¢

Tr.m.s.

9.2 Fraction of energy interchanged in a kicked beam

The energy associated with betatron oscillations in a transverse plane is defined
here as a square of the amplitude of the oscillation envelope. For the difference reso-
nance QX - QZ = p, there is an interchange of energy between horizontal and vertical oscil-
lations following a kick in a transverse plane and the fraction of interchanged energy is

S [

A* + |Cl?
where |C| indicates the modulus of C.

9.3 Parameters of the coherent oscillations of a kicked beam

When close to the difference resonance Qx - QZ = p, the coupling provokes a modula-
tion of the amplitude of the oscillations in the same plane as an angular kick is given.

S - Al

1

2 2
frev \}A + |C|

S is the ratio of the minimum to the maximum of the amplitude modulation,

T is the period of the modulation [s] ,

f oy 1s the revolution frequency [s7'] (Section 3.3).

The above formulae provide a simple method for measuring |C| and |A]| (see also
Section 9.5).

For the ISR: frev is given in Table 2.

9.4 Time shift of the coherent oscillations of a kicked beam

When kicking a pulse at an angle dz/dx = /BX/SZ while being close to the resonance
Qx'- QZ = p, the amplitude modulation observed in the horizontal or vertical direction is
shifted, compared with the modulation following a simple horizontal or vertical kick.

arctg \/A2 |c[2 (Im.C)

A (Re.C)

t



- 65 -

(Im.C) and (Re.C) are the imaginary and real parts of C (Section 9.1),
T is given in Section 9.3,

§, is the time shift of the amplitude modulation [s] .

9.5 Measurement of the coupling coefficient

By combining the formulae of Sections 9.3 and 9.4, |A|, Re.C, Im.C and |C| can be
expressed in terms of measurable quantities

- S
lAl T TFf
rev
kicking in a transverse plane,
1
Icl = 75 Ji-¢°
Trev

[
Im.C SA t . a.
F%Tﬁ' Tar tg <2ﬂ-7r> kicking at an angle dz/dx = /BX/BZ.

S, T and frev are defined in Section 9.3 and Gt is defined in Section 9.4

9.6 Changes in beam dimensions due to linear coupling

Averaging on time the modulation of the amplitude of the betatron oscillations due to
linear coupling with n = -1 (Section 9.1) gives the apparent beam sizes. Without shaving,

Ox _ Bx ‘Jr 1[&
Ve \'t2
%,0 X,0
P—
% _ ‘, B ‘/1+%|:<0x,o) -1 |c|? )
9,0 Bz,o %,0 J A%+ |C|?

Oy and o, are the r.m.s. values of the horizontal and vertical distributions of the

the sizes are3?)

P—
0z,o) -1 |c|? ,
%,0

i A2 + Iclz

amplitudes, respectively, at the azimuthal position 6 [m] ,
B, and B, are the betatron amplitude functions at 6 [m],
o] and o are the initial values of o_ and o, at the position 60 [m],

X,0 z,0

3
Bx,o and Bz,o are the initial values of B _and B, at 8 [m],

C is explicitly given in Section 9.1.

Considering a vertical shaving of the beam, the remaining particles are initially in

a 4-dimensional phase space volume, which is given by

2
< Z
2 2 2 2y — S
vy * V; + (A +\[A + B?) 8 ,
Z,S
where:
_ lClZ 2 2 _ 2 _ 2y _ (Re-C)A * ¥ (Im'C)A * 1%
A= n? (UG +ug™ - V5 = vg) n? (g vo*ug ve) + n? (g Vg~ ug Vo) »
nc C (o]
. _ (Im.0) * w1y _ (Re.C) & _ %
B n.;’ (uo Yo * Yo Vo) n (uo Vo Y% Vo) ’

C
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with X
_ 0
X,0
%o
v, = s
VBz,o
x! Q X
* Bx,o o X,0 "0
ug s
Bx,o
z! Z
* Bz,o 0 0‘z,o o
Vs s
Bz,o

c VA2+1C|2’

(Re.C) and (Im.C) are the real and imaginary parts of C (Section 9.1),

3
|

X, x'
o’ %o’ %o

is the position of the scraper blade [m] ,

and zé are the initial coordinates of the particles,

s is the betatron amplitude function at the scraper [m] ’
’

and a, . are the initial values of o and o, at 60.

X0 ,0
Averaging on time the amplitude of the oscillations inside the phase-space volume
defined above gives the change of the vertical beam size as a function of the shaver posi-
tion or of the fraction of particles left. Typical curves giving the remaining fraction
of a shaved beam Fs,z as a function of the ratio of the final to the initial beam height

ch/cJZ’0 are represented in Figs. 17 and 18 for different emittance ratios and different
values of F (Section 9.2). These results can be used for horizontally shaved beams, pro-

vided the corresponding variables are used.

FORMULAE IN CONNECTION WITH SUM AND DIFFERENCE RESONANCESS30,33,3%,35,36)

Symbols frequently used in this chapter

ay Twiss parameter (Section 1.1)

uy phase of betatron oscillation (Section 1.1)

Ey initial transverse emittances associated with one particle
° and assumed different from zero [m rad]

n., n, integers defining the resonance of interest

N order of the resonance: N = InX[ + Inzl

gy = EY/EYO amplitude growth in a resonance

e distance from the resonance

-Bp magnetic rigidity [Tm] (Section 2.1)
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Fig. 17  Vertical blow-up due to linear coupling for different

rates of vertical shaving and low emittance ratios
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Fig. 18 Vertical blow-up due to linear coupling for different

rates of vertical shaving and high emittance ratios
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10.7 Resonances in a coasting beam due to the magnetic fields

of the machine magnets

The presence of a three-dimensional magnetic field can provoke instabilities and
resonances in the transverse motions of the particles in a circulating coasting beam.
The condition that a resonance may occur in the two-dimensional oscillations of the par-
ticles is

e = nQ +nQ -p =0.

The excitation terms, which characterize the perturbation, have the following forms
=
in the case of a three-dimensional magnetic field verifying rot B=o0:

2T
%l . 2_1ﬁf alImel 722 glIm,172) Bp | #2272 (051
fp d X

(N-1) % %2\ oe(N-D) (M T2
+ RF, (h&|§; MZIE;> 1Mé (6 8

X X Z
exp {i[nn * nu, - 0Q +nQ, - e]} a0,

the indices z and x of K(N_l) and F(N_l) being associated with d_ and f_, respectively,
P P Y
with, for N = 2:

(D R_z(% _ 3) MOV RE O
X 2Bp \ ax 9z x=2=0 z Bp 9z x=2=0
(1) = R =7 = (1) =
FX Z_Bp Be (X Z 0) FZ 0 5
and, for N > 3:
- (k,*+2)/2
k, even K(h D -1) 2
X B R (k, + D! (N -k, - 2)!
- K1)/ 2Bp N-D°
- +
k, odd kN (-1 &2
a(N’l)BZ N-k, - 1 a(N'l)BX
N-k2-2) . (k2+D) Tk + 1 Nk-D ..k
_Bx 9z x=2=0 ox 9z x=2=0
N-1)
K gl (N-2)
2 EVem T R k! N-k -2 3 By
2Bp N-27 5 (Nkem2) ke

k, odd  F7D) X270

where the integer k, is free within the limits given by 0 < k, < (N-2).
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For a two-dimensional magnetic field, the parameters K and F simply become:

F(N'l) = F(N—l) = 0,
X z
(N-1)
(O R T
Bp aXiN—l) ’
(N-1)
K(N-l) _ R 3 B,
z Bp aX(N-].)

The magnetic resonances can be damped by some zero harmonics of the field. These
damping terms associated with the field of the machine magnets are

2m :
o. o
h(Z\)) - 1 / Bq Bs [(_1)s+1 K£2\)—l) + 1:§2\)—1) R (q B_X - s Ta_z_)] de ,
as 21(2R)V(q!s!)? 4 Xz X z

with v=q +s; v, q, s = integers; v < N/2 (N/2 is the smallest integer > N/2).
ngv-l) and ngv_l) are defined as above using 2v instead of N.

10.2 Betatron-synchrotron resonances due to the magnetic fields
of the machine magnets3’)

The presence of a magnetic field can provoke instabilities and resonances in the
transverse motions of the particles in a bunched beam. These resonances are called beta-
tron-synchrotron resonances, since the synchrotron oscillations of the particles inside
the bunches are coupled with the betatron oscillations to induce transverse instabilities.
In this mechanism, the synchrotron motion manifests itself by an oscillation of the momen-
tum of nonsynchronous particles given in Section 3.2. Analysing this oscillation in har-
monics of the revolution frequency, it is possible to write

CO

P-P
p . o . -
D D g:-(;ukexp(lese),

k is an integer,
p and p o are the momentum of the nonsynchronous and synchronous particles, respectively[eV/c],
Qs is the number of synchrotron oscillations per revolution. Q = fp/frev’ these fre-
quencies being defined in Section 3.3.
The horizontal position X, of an off-momentum particle is related to oap (Section 1.1),
but this is no longer an oscillation of period 2m in 6. Using the form of Ap/p given above,

the position xp for a nonsynchronous particle sitting in a bunch can be written as follows:

R R u C
ZV k’L b‘L exp [i (u - 8, 8)]
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where:

o
I
=
N
=
%'
=

e T AT |

0
21T/Qs

uk=%6/ AEexp(—ikQSe)de ,

A= Qx-b-st.

The index % (integer) has been introduced for numbering the two integers k and b, in
order to replace the double summation on k and b by a single summation on £. With every £,

a pair of values (bl’ kJL) is associated. A, means that A is taken for this pair of values,

L
while cp, and ug, mean that ¢, and y are taken for the values b, and k, of the pair,

respectively.
P, is the radius of curvature of the synchronous particle [m] .

This expression of x_ obviously shows the existence of dipole resonances in the ab-
sence of perturbing fields. These resonances are given by

b= Q-b-kQ =0,

so that Xp goes to infinity.

Considering now two-dimensional perturbing fields of the machine magnets, the condi-
tion that a resonance may occur in the transverse oscillations of the particles will be

e - nxQx * anz - P _sz - ; (bSL * kJLQs)jJL =0,

p, m, jg being also integers and }%jl =n-N+1, with n >N-1.

In this case, the excitation terms characterizing the perturbation are

dp n-N+1 ug Cp Iy 27 anBZ
(n-N+1)! (N-1)! R R LR 1 X
- Vi p— (-um) -l_l_ 3/ 7= de =
£ n! T (G 2!) o ) L x
P 2 °

(|n_|+n-N+1)/2 |n_|/2
B g, o e {i[(rn-N+ DGy 0 +n 0,20, 0 +po]}

the indices z and x of B are associated with dp and fp’ respectively,
the symbol TT indicates a product of terms numbered by the index %,
2

n is any integer > N-1,
J o are integers verifying 3 j o = D-N+1,
P, m are any integers.

The coefficients Ay, ux, and cp, are those appearing in the expression for xp given

above. The coefficient u, is any harmonics amplitude of Ap/p.
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The two products appearing in this expression should contain exactly the terms appear-
ing in x_ and no others. Nevertheless, only the dominant terms corresponding to small A can
be considered for xp, dp and fp in order to limit the number of temms in a practical case.

The resonances can be damped as mentioned in Section 10.1. The damping terms are

n-2v+l

J
2v) R? (2v-1)! (m-2v+1)! [.[R R (“kz Cbz)l
h = 2R (-u) TT( 2%
as Bo (2R)"(q!s!)?2r  n! U Ggh (‘E po) n EF By
2m n n+l
o8, v .
o —5 8 e {i[n-20+ D0 -Q )+ po]}
(o]

with v =q +s; v, q, s = integers,

n is any integer 2 2v - 1 ,
jl are integers verifying %; Jg =mn-2v+1,
m, p are integers verifying

p+mQS=—};, (b, + X, Q) J, -

10.3 Resonances due to coasting beams crossing each other

When two coasting beams are crossing at a small angle y, a particle of the beam 1 sees
the electric and magnetic fields of beam 2. As for the case mentioned in Section 10.1,
these fields can provoke instabilities and resonances in the transverse motions of the par-
ticles of beam 1. The condition that such a resonance may occur in beam 1 is again
(Section 10.1)

e = HXQX1+ nZQZl— p = 0.

The index 1 means that the tunes are those of beam 1 particles.

The excitation terms have the following forms using the coordinate system of Fig. 19:

d
2
Pl "B(Inxl/Z) 8(|nzl/2) Ny
whe) b o TRI T
fp 0 ox, 9z,

exp {i [nXuxl ML (nxQx1 * anz1 - P) el} } ds,

V is a force potential which does not necessarily obey Laplace's equation [V] .

The index 1 in the coordinates x, z, 6 and in the parameter B means that the func-
tions such as B, V, u_ and Q_ and the longitudinal speed have to be taken in the coor-
dinate system of the beam 1 particles (Fig. 19).

Since the fields are due to the particles of beam 2, the potential V is given by the
following relations:
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L
¥ 9,
0 %
X2
X
Fig. 19 Coordinate systems used at the
crossing point of two beams
8(N—l) Bxl
() Ty Ind >
N X, 9z,
3V _
1P| . 1%2]
ax, 9z, a(N—l) E21
(1 + B,B,) R In,| 21
X, 9z,

B, is the relative longitudinal speed of beam 2.

The electric field components [V m '] in the coordinate system of beam 2 (Fig. 19) for

Gaussian transverse distributions of particles are given by

- [ (2)(: Zzi
y, exp| -\ 52+
I, / a2+t b2+t dt

oo "B @rnaivo 6o

E

where index 2 means that all the functions are taken for beam 2,
€, is the free-space permittivity [As V! m~'] (Table 1),
a, is the half-beam 2 width (twice the r.m.s. of the radial dimension) [m] ,
b, is the half-beam 2 height (twice the r.m.s. of the vertical dimensions) [m] .
In general, a, and b, are quadratically varying with 6, . :

The passage from the field components Ey.2 to the components Ey1 depends on’ the col-
liding angle ¥, since the coordinates transformation from beam 2 to beam 1 only depends on
this angle (Fig. 19).

For beam-beam resonances, the damping terms mentioned in Section 10.1 are

2
® 2 g, c(RV(@isE | X 7 BP g (2, (28 T

o
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v, q, s are integers satisfying v =q + s ,
V  is the potential given above [V] .

In actual fact, the integrals for d_, f_ and h(iv) are different from zero only in
the interval (6;-d/2R, 6;+d/ZR), if d is the length [m] of the crossing region in which
the two beams interact and 61 is the azimuth of the considered crossing point.

10.4 Resonances due to overlap knock-out 38)

The interaction between a coasting beam (beam 1) and a bunched beam (beam 2) can pro-
voke instabilities and resonances in the transverse motions of the particles. The condi-
tion for a resonance to occur in the coasting beam is

= - - = 0 .
e nxQx1 * anz1 P-ax

The indices 1 and 2 refer to the coasting and bunched beams, respectively.

q is the harmonic of the bunch frequency exciting the resonance (Section 3.13),
f oy 1is the revolution frequency of the bunches [s'] (Section 3.3),
2 .
frev is the revolution frequency of the particle at resonance [s"] (Section 3.3).
1

The excitation terms characterizing the perturbation have the following forms in the
case of the fields induced by the bunches:

d

P . f (/2 (i 172 NV g
= 5 n n

fp 2m B, € J X, Z, Bxi x| Bz! z|

exp {1[nx“x1 +nzuz1 - (nxQxl * anz1 “P) O, + a9, ] }
2m

L /1 exp (i q 6) do
2r 1 g 0,2

2

is the azimuthal angle of the particle at resonance [rad] ,
is the angular position taken in the bunch frame and corresponding to the particle

D

position 6, [rad](Fig. 20),
is the azimuthal variable of integration taken in the bunch frame [rad] ,
is the relativistic parameter of the coasting beam,

0.2 is the azimuthal current distribution inside one bunch of beam 2 [A] (Section 3.10),
b

) = ™ D

is the peak current inside a bunch of beam 2 [A] (Section 3.10).
The last integral on 6 gives exactly the coefficients cq defined in Section 3.13.

V is the potential [V] of the electromagnetic forces due to the peak current of the
bunched beam and V does not obey Laplace's equation. Looking at these excitation forces,
two different cases of overlap knock-out can be considered:

i)  Single-beam overlap knock-out:

The bunched beam and the coasting beam are two parts of the same beam (Fig. 20). Then,
the potential V comes from the electromagnetic forces of the bunched beam and also from the
coupling forces induced by the bunches via the material close to the beam.
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bunched
beam

particle in a
coasting beam

Angle definition for two-beam overlap knock-out,

depending on the directions of propagation

bunched beam

particle in a
coasting beam

Angle definition for single beam overlap knock-out

Fig. 20 Definition of the azimuthal variables used in Section 10.4

ii) Two-beam overlap knock-out:

The bunched beam is different from the coasting beam and crosses it at a finite number
of intersections (Fig. 20). In this case, the effect of the surrounding material is less
important and the potential V is essentially due to the direct electromagnetic forces.

For the direct forces, the potential V is given by the following relations:
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&1 B
s 1
(st 88 —mar a2
X, 9z,
N
3 vV _
n n
X z
ax, 3z, a(N'l) E,
(1 + sign B,B,) ] [n;-ll In,| 21,

1 1

where:

Exl and EZl are the electric field components in the coordinate system of beam 1.
The corresponding components Ey2 in the coordinate system of beam 2 are given in
Section 10.3 for a beam of elliptic cross-section,

B, 1is the relativistic parameter of the coasting beam,

B, 1is the relativistic parameter of the bunched beam,

sign is + 1 if the two beams go in opposed directions and is -1 in the other case.

10.5 Bandwidth for a sum resonance

Given a single resonance e = 0 (Sections 10.1 to 10.4) and a point (QX, QZ) in the tune
diagram, the distance of this point from the resonance is defined as the value of e with
these tunes. Knowing the limits e, and e, on each side of the resonance beyond which the
motion becomes stable, the bandwidth is defined as Ae = |e,| + |e,| (Fig. 21)

Idpl for n, even

(Ing|-2)/2 _(In,|-2)/2
ne o R E, X E, ° (n;EZ +n2E_
2 Bp lnx|! lnzll o) ) ) )
lfpl for n, odd
n, n, >0 or n,n < o ,

where the excitation terms d_ and fp are given in Sections 10.1 to 10.4 depending on the
type of instability considered.

10.6 Trapping condition for the particles crossing a sum resonance

When the tunes, the synchrotron frequency and/or the revolution frequencies are chang-
ing with the time in such a way that the particles are crossing a sum resonance, these par-
ticles can remain trapped in the resonance if the rate of change of the distance from the
resonance is sufficiently small. The condition for the trapping to occur is given byas)

N/2
2E
ldel Ae Bc ny Ez, 2 :
Ll ¢« &2 0 2(2-1) K n_#0
dtl = R ;2 2 2,1 X
quZ + anx = ’
2 N/2
de Ae Bc anXo
rl)( Zo Z XO 2:2

Ae is the bandwidth given in Section 10.5,
N/2 is the smallest integer larger or equal to N/2.
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Fig. 21 Resonance curves for sum resonances
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The coefficients K,  and K, , are given by
b

b

N/2 L n P -
K, = 2D A0 S [t e () (B2 (20
2,, 1 Xo X R p! nx Q-p ’\)"9’+p i ’
V=2 p=0
N/2 L n \P
K _ gD Z A(v-z)z (v-24p) (v-24p-1) .. .. (v=2+1) [x) | (2V) i
%,2 Z Z ! n V=-2+p , L~ ’
, o ‘| P 2 P,%-p
v=4 p=0 -
in which:
R
A, = —(n, E -n E )
X n Oy Z, z X,
R
AL = — (n E.L -n_E_ )
Z n, 'z "X, Xz, ’

and the coefficients h(iv) are given in Sections 10.1 to 10.4 depending on the
type of instability considered.

The form of the rate of change de/dt appearing on the left hand side of the trapping
condition depends on the resonances considered:

i) Resonances_in a _coasting beam due to the fields of the machine magnets or of an other

coasting beam (Sections 10.1 and 10.3)
de _ dQ dQ d frev

X yA
T T T TN T dt

rev

In the case given in Section 10.3, the same expression applies, but frev’ Qx

represent the revolution frequency and the tunes of a particle in beam 1.

and QZ

ii) Betatron-synchrotron resonances (Section 10.2)

2 -

de _ dQ, . dQ, ) (p+ebj,) d ., ns Tk id?i

ac PO [ £ dt gofat o
rev [)

the definitions being given in Section 10.2.
1ii) Resonances_due to_overlap_knock-out (Section 10.4)
_d_e . de1 . szl D d frevl ) q d frev2
dt x dt z dt frevl dt frevl dt

the definitions being given in Section 10.4.

10.7 Maximum growth of amplitude for particles crossing a sum resonance

When the particles cross a sum resonance with a rate of change of e which is sufficient
to avoid being trapped (see Section 10.6), there is still an amplitude growth. The maximum
possible growth of the amplitude which may occur can be calculated for a single crossing as
follows:
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n EZ dg S
X 0 X = fe IS for n_ # 0 only,
n_Ex n_/2 2 X
z “Xo n_E, 2% (n,-1) n’ Ex d
X %0 _ 1, o2 g X n o+ -2 X0 p2 ’ el
1 anXo 8x X X QXEZO dt

Ae is the bandwidth defined in Section 10.5.

The relation for g, valid if n, # 0 only, is simply obtained by exchanging the in-
dices x and z in the preceding relation.

If the particle is crossing the resonance n, times, the average growth of amplitude
will be vn r/ times larger than for a single cr0551ng

The rate of change of e is given in Section 10.6 for different types of resonances.

For monodimensional resonances (n.X = N, n, = 0) or (n.X =0, n = N), this relation

becomes

_ le VTBc

2-N) N
1 - ( de
e S Ay

For bidimensional resonances (nX #0, n, # 0) of order N < 5, the analytic form of

the above integral is given in the Appendix.

10.8 Criterion concerning the distance of the working point

from a sum resonance line

The perturbation of the oscillation amplitude of a single particle in a sum resonance
decreases as the distance from the resonance increases. Assuming that the maximm toler-
able blow-up for a single particle associated with the initial emittances EXO and Ezo is A
(Fig. 21), then the distance Se (Fig. 21) of the working point from the resonance must be
in agreement with

n_|E + |n
se > A{(LL%I{ZO lzzIExo),
anZo * anXo

Ae is the bandwidth defined in Section 10.5.

10.9 Bandwidth for a difference resonance

As in Section 10.5, e represents the distance from the resonance. Knowing the limits

e, , and e, 1 on each side of the resonance between which the amplitude can become zero and
2

the limits e1 )2 and e, ,2 on each side of the resonance between which the amplitude can be-
come maximum, "the bandwidth is defined as Ae = 7(|el Ao+ le, 1| + e, 2| + |e, 2l)
(Fig. 22)

-2)/2 (In_|-2)/2
e = R E(lnxl) Elnzl) (lnxlﬁz . ;

|d | ] for n even
22 8o [n |tn |t %o Z

If | ] for n, odd
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The parameters dp and fp are given in Sections 10.1 to 10.4, depending on the type
of instability considered.

10.10 Maximum amplitude for particles on a difference resonance

Such a resonance is always stable and a particle remaining inside the band defined
in Section 10.9 can oscillate between two limits (Fig. 22) given by
n
X
n

EZO
OSgXS 1+ Ec-;,

Z

10.11 Criterion concerning the distance of the working point

from a difference resonance line

Since a difference resonance is stable, the amplitude of the single particle motion
oscillates between two limits, but with increasing distance from the resonance these limits
converge. Assuming that the maximum tolerable beating of the amplitude for a single par-
ticle associated with the initial emittances EXO and EZO is A (Fig. 22), then the distance
Se (Fig. 22) of the working point from the resonance must be in agreement with

Le
K

[

se >

N —

Ae is the bandwidth defined in Section 10.9.

10.72 Monodimensional resonances for coasting beams crossing at large angle

This is a particular case of the resonances mentioned in Section 10.3. The crossing
angle can be either in the horizontal or in the vertical plane and it is assumed to be
small as in Section 10.3, but large enough that only the monodimensional resonances
e = Nle - p = 0 are excited in the perturbed beam.

It is assumed in what follows that the perturbing beam 2 has a transverse, uniform
distribution in the colliding plane and a Gaussian distribution in the direction perpen-
dicular to the colliding plane. Furthermore, the distance y, of the excited particle in
beam 1 w.r.t. the beam 2 centre is taken as small. Under these conditions, the bandwidths
of these monodimensional resonances become, using the formulae of Sections 10.3, 10.5 and
8.9

Ae N/Z=2) N QPP for N even
2 (N-1)(N/2-1):  ?
N Yy bb Yy
Ae — AQ for N odd, — << 1
N-1)/2 /N-1., O ’ ’
(17 (=) Y 71 OYZ
v, is the distance of the particle from the beam 2 centre in the direction perpendicular
to the colliding plane [m],
Oy is the r.m.s. value of the beam 2 size in the direction perpendicular to the collid-
: ing plane [m],
AQ?b is the linear beam-beam tune shift given in Section 8.9, in the direction perpen-
1

dicular to the colliding plane.
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Using the fornula in Section 10.7 for monodimensional resonances, the transverse in-
crease of the initial amplitude of particle 1 is given by the following equation when cross-
ing the resonance by changing the tune and/or the revolution frequency:

Ao
Y1 _ m8,c Ae
0‘yl R N iN de1 P <:1frevl
dt

rev,

oy, is the initial r.m.s. value of the transverse amplitude of particle 1 (Section 1.6)
in the direction perpendicular to the colliding plane [m] ,

8, is the relative longitudinal speed of particle 1,

le is the particle tune in the direction perpendicular to the colliding plane,

frevl is the revolution frequency of particle 1 [s‘l] s

Ae is the bandwidth given above.

Even if the mathematical definition used for the bandwidth does not apply to the
dipole resonances, the final result concerning the transverse blow-up is still valid,
using a virtual bandwidth Ae with N =

bb
By, /1B, c AQY o,
71 VR o, oy dfrev ’
1
rev dt

by, is the dipole shift of particle 1 at resonance in the direction perpendicular to the
colliding plane [m] .

All other parameters are defined above.

For the ISR: The crossing plane is horizontal so that y = z. The expression for AQB?
appears in Section 8.9.

10.13 Monodimensional resonances due to overlap knock-out at large colliding angle

This is a particular case of the resonances mentioned in Section 10.4. All assump-
tions made in Section 10.12 are also applied in the present case and y again represents
the direction perpendicular to the crossing plane. The bandwidth of the monodimensional
resonances (Section 10.4)

e = N -p-afy—= =0
rev,

becomes, using the expressions in Sections 10.4, 10.5, 8.9 and 3.13,

N bb
. A
D hoven:

Ae for N even

N
S-1)/2 (Nzl o

c AQy for N odd, 6__ << 1,
Y2

Yy oy )’ AQ (Section 8.9) are defined in Section 10.12,

Cq are the hannonics amplitudes defined in Section 3.13.
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Using the formula in Section 10.7 for monodimensional resonances, the transverse in-
crease of the initial amplitude of particle 1 when crossing the resonance by tune and/or
frequency changes is given by

Acyl ) 1TB c Ae
(o
Y1 V2R N ‘/‘N O,  , drev, g dfrey,
I&E " Frey, At Frey, at

oy, , B, and Qy, are defined in Section 10.12,
frev, and frey, are given in Section 10.4,
Ae is the bandwidth given above.

Even if the mathematical definition used for the bandwidth does not apply to the
dipole resonances, the final result concerning the transverse blow-up is still valid,
using a virtual bandwidth Ae with N =1

" /— R o, th ] p dfrevl @ Frev,
I " Frey, dt

by, is the dipole shift of particle 1 at resonance in the direction perpendicular to the
colliding plane [m] .

All other parameters are defined above.

When the tune and the revolution frequency of particle 1 vary with momentum as given
below,

Ap
= + L 5}
Y, Y0t Y D .

A
f 1+n22

f
Tev, Tev, ,0

J

the momenta at which the resonances appear in beam 1 are given by

Ap = Ny,0 * P+ frev,/frev, 0
Pl an frev,/frev,,0 * NQy ’

le,o is the tune of beam 1 at centre line,
frevl ,0 is the revolution frequency of beam 1 at centre line [s™!] ,
! is the chromaticity of beam 1,

Y1
frev is the revolution frequency of the bunches [s'l] ,
2
—AI}:— is the relative momentum difference between the particle at resonance and the par-

ticle at the centre line.

For the ISR: The crossing plane is horizontal so that y = z. The expression for AQEb

appears in Section 8.9. !
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11. FORMULAE IN CONNECTION WITH COASTING BEAM INSTABILITIES2"»39,40,41,42,43,44,45)

Symbols frequently used in this chapter

Ap/p momentum spread for coasting beam

Z, = u,C  impedance of free space (Table 1) (]

o conductivity of the chamber material [ 'm ']
EO rest energy of proton [eV]

n is an integer.

11.1 Stability criterion for transverse resistive wall instabilities
of coasting beams

The folloWing stability criterion applies to a coasting beam®®) :

BY |- . -
Izll < kF = (n Qy) n 5{35¥§T D ’
Y

where:
Eo
k = m-— = 2.947618 10° (vl,
%L is the total transverse impedance in the machine [Qm“] ,
n is every integer > Qy ,
3Q /3(Ap/p) = Q} is the chromaticity (Section 1.1) multiplied by the tune,
Ap/p is the full relative momentum spread at half height,

F is a form factor depending on the aspect ratio of the coasting beam.

Considering symmetric particle distributions with a central plateau and sin® edges,
the aspect ratio of the beam is defined as plateau width over sum of edge widths at half-
height. The minimum form factors associated with the worst possible phase of Z are

1
given for different aspect ratios in the table below*®) :
Aspect ratio of beam 0 1 10 100
Minimum form factor F 1 0.89 0.65 0.45 .

This criterion can also be applied to a bunched beam if the rise time of the trans-
verse instability is short compared with the period of the radio-frequency system. In
this case, the current to be considered is the peak current of one bunch (Section 3.10).

For the ISR: The resistive wall instability is known under the name of 'brickwall in-
stability". Tables 3, 4, 5 and 6 give the values of E&, Qy and Q}, g and v,
and n, respectively.

11.2 Expressions for the transverse impedance

In the case of an elliptical vacuum chamber, the following expression applies“°):

yA 2RZ
I A N S S ‘/ o 1
gl 1R[62Y2<a2 5)-ar Bn-QYUF] ’

a  is the coasting beam height [m],
b is the half-height of the chamber [m] .



- 85 -

In the case of cross-section variations”), the approximation of the low frequency
impedance for short circular cavities and for perfectly conducting walls gives

, . th (BZ - b2 0.851)
b

L—-bg BZ + b? 826

where:

while the approximation for long circular cavities and perfectly conducting walls gives

;- 1z, Bz—bz) ,
1 B2y?be \B? + b?

where:

b is the half-height of the chamber [m] ,
B is the half-height of the enlarged chamber [m] ,
L is the length of the chamber enlargement [m] .

In the case of a cylindrical resonance cavity in its lowest mode, the transverse im-
pedance is

d Zg B o (H_Qy) (sin 6/2>2
T ZR 8/2

where:

6 = E;Jl >

j, being the first zero of the Bessel function of the first order J, 718,
r is the radius of the cavity [m] ,

d is the length of the cavity [m] .

For a beam surrounded by a circular metal envelope of radius r, the transverse im-
pedance is related to the longitudinal one Z // by

2R

Z, = 1
1 1% |n-Q | "/
Y
For the ISR: The conductivity of stainless steel and R are given in Table 2. The values

of Qy and of the relativistic parameters are given in Tables 4 and 5, respec-
tively.
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11.3 Stability criterion for longitudinal resistive wall instabilities
of coasting beams

This instability is associated with self-bunching of the beam due to the fact that
the revolution frequency above transition decreases when the energy increases. The lon-
gitudinal instability above transition is also called the ''negative mass instability"
when it is due to space charge effects in a perfectly conducting pipe.

The following stability criterion applies to a single coasting pulse“l):

|Z_//
n

< g Bvinl (mY
- I p b

while the stability criterion for a stacked coasting beam is*2)

&
n

A A
< kF Bxlnl <_p5_) <iF_>
- I p p ’
where:
Es

k = 4 2 = 3.753024 10° [vl,

Z, is the longitudinal impedance (2],

Ap/p 1is the half relative momentum spread at half-height,

Aps/p is the half relative momentum spread at half-height of the stack,

ApF/p is the relative momentum width at half-height of the low energy flank,

F is the form factor depending on the aspect ratio of the coasting stack beam,
given in Section 11.1,

F' is a form factor depending on the particle distribution in a single pulse.
The minimum form factors F' associated with the worst possible phase of Z”
for different distributions are given in the table below“e):

Distribution Form factor F'
Triangular with rounded edges 0.555
Quartic 1.073
Circular limit 1.061
Very smooth 0.644

F' is very close to unity for a reasonable coasting pulse distribution where no sharp
edges and infinite slopes appear in practice.

As in Section 11.1, the first criterion can be applied to a bunched beam if the rise
time of the longitudinal instability is short compared with the period of the radio-fre-
quency system. The current to be considered in this case is the peak current of one bunch
(Section 3.10).

For the ISR: Table 5 gives the relativistic parameters and Table 6 gives the values of n.
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11.4 Expressions for the longitudinal impedance"®»*°)

In the case of a perfectly conducting circular pipe (''negative mass instability'!),
the following expression applies:

is the radius of the circular pipe [m] ,
is the radius of a circular beam [m] .

For a resistive circular vacuum chamber, the impedance is

EA{ - 1-1i "R Zo B
n /ﬁ-b no ’

b is the radius of the vacuum chamber [m] .

For a simple cylindrical cavity, the expression for the lowest mode is

- d [sin (ra/M]°
Ly = 72 *QrZ[—cV—n X ] ’

is the wavelength [m] ,
is the quality factor of the cavity,

is the length of the cavity [m] ,
is the radius of the cavity [m] .

H a0 >

In the case of cross-section variations and bellows, the impedance can be approxi-
mated by the expression for corrugations with rectangular cross-section

Z
/A T
T 1CBZoln(l+5) >
C 1is the fraction of the circumference occupied by these elements,
T 1is the depth of the corrugations [m] ,
b is the half-height of the chamber [m] .

In the case of plates, such as those formed by clearing electrodes or pick-up stations,
the impedance can be approximated by
Ly :

. - “o
n icCs 2m

Tk

b
n
F >
p
C and b are defined as in the preceding expression,
w_  is the plate-width [m] ,
h, is the distance of the plate from the chamber centre [m] .

For the ISR: The conductivity of stainless steel and R are given in Table 2. The rela-
tivistic parameters are given in Table 5.

In the special case of a cylindrical cavity in stainless steel and with
R = 150 m, the following expression applies: ,
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Z
/- N A d
T 7.6 10 a+_r sin (1.2 f_['.) >

d is the cavity length [m] ,
r is the cavity radius [m] .

11.5 Stability criterion for electron-proton oscillations without frequency spreads“s)

In coasting high energy proton beams, transverse vertical oscillations can be due to
electrons moving in the potential well of the protons. These oscillations become unstable
beyond a threshold in the frequency change of protons. Neglecting the effect of particles
of the same species and the presence of walls, this threshold and the growth rate of the
consequent instability can be approximated,in the absence of frequency spread, by

. (n-Q)*-Q
< ———
P72/l (n-Q)

, Q
1 _
T T Ty Qp n-eQe >

1/t is the growth rate of the unstable modes [s~!]

n is the unstable oscillation mode, such that n,--QZ is close to Qe’

Qe and Qp are the vertical tune changes of electrons and protons, respectively, in the
potential well of the other species

N

2 = Kk ——————
R e Rb(a+b) £
Q¢ = k Pl
P PYRb(a+by £,
where:
T, c?
ky = el 4.08407 [m®s~2] ,
™
r_ c?
K, = —21-3- = 2.22425 107% [m®s™2] ,
™

n. is the neutralization factor defined in Section 4.8,
N is the number of protons (Section 3.11),

a is the half-width of the beam [m] ,

b  is the half-height of the beam [m] .

For the ISR: Table 2 gives the values of R and £ while Table 5 gives Y.

rev’

11.6 Stability criterion for electron-proton oscillations with frequency spreads“s)

Considering the oscillations described in Section 11.5, it is now assumed that the
frequencies of oscillation of single particles will depend both on the energy and the
amplitude of the particles. Corresponding to these frequency spreads there are tune
spreads which are normally assumed to have a parsbolic distribution with a half-width T.



12.

- 89 -

pQ = [1 (Q—FE'&)Z]

where Q stands for Qe’ Qp and QZ (Section 11.5) and where T stands for Fe, I' and FZ.

p
Neglecting the spread in the small quantity Qp and assuming that the two spreads Qe

and QZ overlap in frequency space, the stability threshold approximately corresponds to

8 [&%
Q, < gd@e' Vi Te
Qe and Q_ are given in Section 11.5,
FZ and Fe are the widths of the distributions p(QZ) and p(Qe),respectively.

FORMULAE IN CONNECTION WITH BUNCHED BEAM INSTABILITIESS?,5!,52,53,54,55)

Symbols frequently used in this chapter

A cavity voltage [V]

@S phase of the synchronous particle

h harmonic of the radio frequency system

M number of bunches

Bf bunching factor defined in Section 3.12

fp phase oscillation frequency (Section 3.3) [s™!]
£ oy revolution frequency (Section 3.3) [s7!]

Z_ =uc impedance of free space (Table 1) []
S bunch shape factor (Section 3.12).

12.1 Growth-rate of the longitudinal motion

The motion considered here consists of rigid-bunch oscillations, i.e. dipole mode
(m = 1), and of higher bunch-shape oscillations of the individual bunches, i.e. 2m-pole
modes (m > 2),'pius perhaps coupled motions of the different bunches, i.e. coupled-bunch
modes (n). The index m specified the harmonic of the bunch-shape oscillation, while n
gives the phase difference 2mn/M between adjacent bunches.

In the longitudinal phase plane, this motion corresponds to oscillations of the par-

ticle distributions with the frequency [s~!]

f = mfp + Afm ,

where Afh is the coherent frequency shift of mode m, explicitly given below for some prac-
tical cases (Sections 12.2 to 12.4).

The growth-rate of such a motion in the absence of frequency spreads is
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and the longitudinal motion is unstable when Im(Afﬁp is positive. Another stability
criterion and a decoupling criterion, both valid in the presence of frequency spreads,
are given in Sections 12.5 and 12.6.

12.2 Frequency shift in bunch oscillations due to perfectly conducting walls

For a bunch with approximately parabolic line density, the frequency shift of the
bunch oscillations due to perfectly conducting walls is given by

Af = A,

where the space charge frequency shift is for equidistant bunches

1 I M Zg fp b
AfSC = 4_-"6Y2 (BtS)ahVCOSq’S [1 + 2 ln(a)] s

m 1is the mode of the oscillation (Section 12.1),

b is the radius of the round vacuum chamber [m] ,
a is the beam radius [m] .

By virtue of Section 3.12, S is roughly equal to 1.5.

For the ISR: The values of h, V and B, y are given in Tables 2 and 5, respectively.

12.3 Frequency shift in bunch oscillations due to resistive walls

For a smooth round vacuum chamber, the frequency shift of the dipole mode (Section 12.1)

I M/2 f RBZ £
Af = 1 p BOG( P +E)’

1 24m b h V cos @S o M frev M

is

n 1is the coupled-bunch mode (Section 12.1),
0 1is the conductivity of the chamber material [Q'lmfl] ,
b is the radius of the vacuum chamber [m] .

The bunch function G(q) is given in Fig. 23 and the motion is unstable for q < %
below transition and for q > % above transition, by virtue of the stability criterion for
the buckets (Section 3.4).

The frequency shifts for the higher modes m > 2 (Section 12.1) are estimated for equi-
distant bunches to be

~ m
Afm = (st) Afl s

Af, being given above.

For the ISR: The values of o, h, V and frev are given in Table 2. Table 5 gives the values
of B.
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Re (G)

Im (G)

Fig. 23 The bunch function G(q)

(formula in Section 12.3)

12.4 Frequency shift in bunch oscillations due to resonant elements

A resonator is characterized by a shunt impedance and induces for equidistant bunches
the following frequency shifts in the bunch oscillations described in Section 12.1:

R//IMf

1
Af, ShVcos <I>s

m - 75 B DFm(ACP) s

f

m is the mode of the oscillation (Section 12.1),

is the shunt impedance of the resonant element [Q] ,

Fm is a form factor that specifies the efficiency with which the resonator can drive a
given mode. It is given in Fig. 24. The maximum values E o are approximately 1/v/m.

Ad  is the phase change that occurs during the passage of a bunch. It is defined by

o

AD = k fres E >
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)
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08 +
2
06 + 3
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0.4 +
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: ! f | | | -
0 2 4 6 8 10 12 Ad
Fig. 24 Form factor for different modes
(formula in Section 12.4)
where:
Kk = 2T - 2.095845 107° [m™}
- [x's]
f o 1s the resonant frequency of the resonator [s7'] ,
3 is the full bunch length [m] .

The complex factor D is given by the following expression:

where:
2mi fres
a + _I\T n:* £ - Q
- rev
and
_ fres 1;bb
ol = K _—Q-— Py

a is the attenuation factor of the induced signal between bunches,
is the coupled bunch mode (Section 12.1). Modes n=0 and n = M/2 for
M even are not excited,

Q is the quality factor of the resonator,

typ 1is the time between bunch centres [s] .

The extreme modulus |D| as a function of the factor 1/a is given in Fig. 25.
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Y

Fig. 25 Extreme modulus of the complex factor D

(formula in Section 12.4)

For large values of Q, i.e. a << 1, the expression of D simplifies to

f
res

D = .
2Q (fres_J f

-1 f ’
I‘eV) res

j being an integer. The coupled bunch mode n is excited when fres =3jM frev +n frev‘

For small values of Q, i.e. o >> 1, the expression of D becomes

D = -2 e ltmM ME ),

sin (2r £
Te

S rev

and coupled bunch modes near n = # — are most strongly excited.

=

For the ISR: The values of h, V and frev are given in Table 2. Table 5 gives the values
of B.

12.5 Decoupling criterion for longitudinal instabilities of bunched beams

A rule-of-thumb for decoupling the bunches is that the r.m.s. spread in individual
bunch frequencies should exceed the frequency shift Afm due to the coupling force. When
the spread arises naturally from a difference AN in bunch populations, this criterion can

be written as follows:
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AN
|Af | < (—) lm Af_ | ,
m N Tr.m.s. sc

m is the oscillation mode (Section 12.1), m > 1,

Afsc is the space charge frequency shift (Section 12.2) [s™'],

N is the number of particles in a bunch,

Afm contains terms similar to those given in Sections 12.3 and 12.4, excluding the term

in Section 12.2 which does not contribute to the coupling.

Since this rule-of-thumb is based on bunch-to-bunch differences in the incoherent
motion, it does not apply to the dipole mode and is somewhat optimistic for the higher
modes.

12.6 Stability criterion for longitudinal instabilities of bunched beams

The stability depends on the spread in synchrotron frequency of the bunch due to the
nonlinearity of the force. For a given mode m (Section 12.1), the stability criterion be-
comes

-h!é]

|Afm| < F_ ,

p

Af  is the sum of all interactions, i.e. space charge, resistive wall, resonators, etc.

F is the full spread in fp (Section 3.3) between centre and edge of the bunch. It is
plotted in Fig. 26 as a function of the product BfS(Section 3.12) and the parameter T
(Section 3.1).

r=0.95 0.75 0.50 0.25 0

L v l - i —-—
0 05 10 BsS

Fig. 26  Full spread in synchrotron frequency
(formula in Section 12.6)
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12.7 Radio-frequency voltage inside the bunches with inductive walls

For bunched beams, the space charge effects and the presence of inductive walls modify
the radio-frequency voltage inside the bunches. Assuming a parabolic line density distri-
bution A [m™*]

I 22
)\(S) k P a—— (T - 52) N
M frev L

where:

k = = 3.74508 10'°A"!s™! |

olon

the voltage U [V] seen by a particle at a distance s [m] from the bunch centre is:

R f2

h f2
Uu =1V sin@s—s—P—coscbs ,
Po

L is the full bunch length [m] ,

s is the distance from the centre of the bunch [m] : - % <s 5—%— s

is the phase oscillation frequency in the absence of self-forces and wall inductance
(Section 3.3) [s7!] ,

f is the incoherent phase oscillation frequency in the presence of self-forces and
wall inductance [s™!]

Z
2 - g2 ) IR? g% ‘_z_‘
f fPo [1 AT RNV cos o (28\(2 n )

Considering the coherent oscillations of the bunches described in Section 12.1, the

dipole mode and quadrupole mode frequency shifts are

AEL = 0

1
M, = 7 (£~ fp) -

2

The wall properties appear in the coupling coefficient g and the total inductance L.
With a circular symmetry, the following formulae apply:

) b
g = 1"'2211'5
‘§|= 2m £ L,
n rev

a is the radius of the circular beam [m] ,
is the radius of the circular pipe [m] ,
l%' is the inductive impedance of the pipe [Q] .
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For the ISR: The values of R, h, frev and V are given in Table 2. The values of B and Yy
are given in Table 5.

A measurement made in the ISR®2) gives |Z/n| = 26 Q or L = 13 H.

12.8 Bunch lengthening due to inductive wall effects

The voltage perturbation mentioned in Section 12.7 provokes a bunch lengthening given
by

L4 = gt - 24w IR° H
o} h MV cos o zgy

) is the full bunch length in the presence of self-forces and wall inductance [m] ,
lo is the full bunch length in the absence of self-forces and wall inductance [m] s
g and |Z/n| are defined in Section 12.7.

For the ISR: The values of R, h and V are given in Table 2, while B and y are given in

Table 5. A value for |Z/n| is given in Section 12.7.

12.9 Bucket area variations due to inductive wall effects

The voltage perturbation given in Section 12.7 provokes a change in the bucket area
defined in Section 3.5. For I = sin @s = 0, this change is given by

NG )

A is the bucket area in the presence of self-forces and wall inductance,

Ao is the bucket area in the absence of self-forces and wall inductance (Section 3.5),
g and |Z/n| are defined in Section 12.7,

the negative sign is valid below transition energy and the positive one above transition
energy.

For the ISR: The values of h, V, B and y are given in Tables 2 and 5. A value for |Z/n|
is given in Section 12.7.
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APPENDIX

Analytic form of the integrals giving the maximum amplitude growth

The integrals in which we are interested are given in Section 10.7. Reference 5
gives the explicit expressions of these integrals for any values of n and n . Since
these expressions are quite complicated, it seems judicious to give only the analytic
forms for N < 5.

Let us put
dg
. _ X - (2-N) du

J(n,n ,sign) = / 72 @D VIk| / n/Z7 @1 °

(k + g}z() gy (u? +sign) u
where:
Kk = Ny Ezg _ u = &
n EXO 'k[

and sign = + 1, depending on the sign of k.

Using the new variable u, the last integral on the right hand side (i.e. J/\’ lkICZ-N))
is explicitly given below for different n., n, and N (N £5). The cases where n_orn,
is zero do not appear, since these solutions are given in Section 10.7.

N-1, 1 N-2, 2 N-3,3 N-4, 4

Sign

Qn[u +qfu? + sign] 1 1

2+1-1
jgn YL -7 arctg u +1
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arc cos (%) -argth u -1
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Table 1

Table of physical constants

Symbols Meaning Value Units
c velocity of light 2.9979246 10° ms™}
e electronic charge 1.602189 10-'?° As
N, number of molecules per mole 6.022169 1023 -
| menmeof el | om0t |
TSt standard temperature for gas 273 K
PSt standard pressure for gas 760 Torr
Eo rest mass of proton 938.256 MeV
Ee rest mass of electron 0.511004 MeV
T, classical proton radius 1.534697 107'® m
T, classical electron radius 2.817938 107'° m
GH absolute atomic gas factor

for hydrogen 10.552 -
GHe for helium 39.448 -
GC for carbon 328.64 -
GN for nitrogen 442.27 -
GO for oxygen 554.09 -
GNe for neon 878.57 -
GAr for argon 2709.3 -
€0 permittivity of free-space 8.854188 107'2 | AsV!m !
Zy impedance of free-space 119.917w Q
Uo permeability of free-space 4 1077 A lsvm?
k Boltzmann constant 8.617084 107'' | MeV K!
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Table 2

Table of parameters valid for the present ISRSS)

Symbols Meaning Value Units

o bending radius 78.5895 m

R average machine radius 150.0253 m

L machine circumference 942.6368 m

n/p field index upon p for F unit -3.136 m?
for D unit 3.020 m !

n'/p radial derivative of field-index upon p for F unit -1.946 m—2
for D unit 1.493 m2

N number of intersections 8 -

h RF harmonic 30 -
Tf.ev revolution time at B =1 3.144298 us
£ revolution frequency at g = 1 3.18036 10° Hz

\' cavity voltage at the beginhing of the cycle 16 kv

at the end of the cycle 700 \

€ normalized horizontal emittance 137 to 18w mm mrad

€, normalized vertical emittance 8m mm mrad

o stainless steel conductivity 7.6923 10° o 'm!

o] total proton-proton cross-section

PP at the ISR energies 4.09 1073° m?
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Table 3

Values of some transverse parameters

for standard working conditions in the ISR

Working — = =
Line Tt 0Lp,x 8x B, Bz,I
FP 8.8172 1.9294 20.8185 22.9348 14.56
8C 8.7977 1.9380 20.8789 22.9427 14.56
5C 8.7800 1.9458 21.0724 23.0305 14.93
™ 8.5133 2.0696 21.5626 23.8607 16.13
ELSA 9.0705 1.8232 20.2391 22.5412 12.17
Steel
Low-B 9.0903 1.8152 20.5244 23.4407 2.63
Note : These values are given on the centre line.

Table 4

Values of the tunes and tune derivatives

for standard working conditions in the ISR

H-plane V-plane
Working
Line
Q Q Q' Q, Q, Q
central top(+40) central top(+40)
FP 8.637 8.6785 2.002 8.627 8.6685 2.002
8C 8.6145 8.6475 1.599 8.6245 8.6575 1.599
5C 8.550 8.615 1.970 8.600 8.657 3.259
™ 8.637 8.6785 2.147 8.627 8.6685 2.147
ELSA 8.9015 8.955 2.439 8.8815 8.935 2.439
Steel
Low-B 8.9015 8.955 2.428 8.8815 8.935 2.428
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Table 5

Values of magnetic rigidity

and relativistic parameters at ISR energies

P 8 Bp
(GeV/c) (Tm)
11.776 0.99684 12.591 39.280
15.376 0.99814 16.418 51.288
22.505 0.99913. 24.007 75.068
26.588 0.99929 28.355 88.687
31.400 0.99949 33.481 104.738

i
Table 6

Values of revolution frequency spread per unit of momentum spread

for different working conditions in the ISR

P n in 1073 n in 107° n in 10-3 n in 1072 on
(GeV/c) on FP on 8C on ELSA Steel Low-B
11.776 - 6.55507 - 6.61215 - 5.84669 - 5.79380
15.376 - 9.15301 - 9.21010 - 8.44464 - 8.39174
22.505 -11.12779 -11.18488 -10.41941 -10.36652
26.588 -11.61912 -11.67620 -10.91074 -10.85785
31.400 -11.97081 -12.02790 -11.26243 -11.20954

Note : These values are given on the centre line.
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Table 7

Factor between moving and stationary bucket area

r o(T)

0 1

0.1 0.8039
0.15 0.7294
0.2 0.6612
0.25 0.5981
0.3 0.5389
0.35 0.4833
0.4 0.4306
0.45 0.3807
0.5 0.3333
0.52 0.3151
0.54 0.2972
0.56 0.2799
0.58 0.2627
0.60 0.2461
0.62 0.2297
0.64 0.2168
0.66 ‘ 0.1981
0.68 0.1828
0.70 0.1678
0.72 0.1534
0.74 0.1393
0.76 0.1255
0.78 0.1121
0.80 0.0991
0.82 0.0865
0.84 0.0744
0.85 0.0686
0.86 0.0627
0.87 0.0571
0.88 0.0515
0.89 0.0462
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Table 8

57) and molecular masses

Gas Molecular mass Ionisation cross-section
M o, in 1072 m?
H, 2 1.8
He 4 1.8
CHy 16 9.7
H,0 18 7.5
N, 28 8.2
Co 28 8.2
0, 32 9.1
Ar 40 8.9
CO, 44 13.0

Table 9

Nuclear cross-sections for protons at ISR energiesss)

Atom Symbol Value in mb = 10~3%! m?
Hydrogen On,H 40
Carbon gn,C 340
Nitrogen %n,N 390
Oxygen cn,O 440
Argon on,Ar 890
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Table 10

Principal beam parameters in the SFM of the ISR

SEM field Central orbit momentum (GeV/c)
Parameter
T 31.460 26.588 22.505 15.376 11.780
1.00 dmax [mm] 10.7 12.6 14.9
Shax [m] 3.1 3.1 3.1
dmin [mm] 68.0 80.4 95
Snin [m] 2.9 2.9 2.9
QI [mm] 29.3 34.7 40.9
V [degreel 17.477 17.971 18.552
0.85 dmax 8.6 10.2 12.1 17.8
S 3.1 3.1 3.1 3.1
max
dmin 58.4 69.2 81.7 119.5
Snin 2.9 2.9 2.9 2.9
EI 25.5 30.2 35.7 52.1
v 17.080 17.503 17.998 19.494
0.65 dmax 5.6 6.7 7.9 11.6 15.2
Snax 3.15 3.2 3.2 3.2 3.15
dmin 45.4 53.8 63.5 93.0 121:3
Snin 2.9 2.9 2.9 2.9 2.9
21 20.5 24.3 28.7 41.9 54.7
¥ 16.532 16.854 17.232 18.372 19.471
0.5 dmax 3.3 3.9 4.7 6.8 8.9
S 3.3 3.3 3.3 3.25 3.3
max
dmin 35.6 42.1 49.8 72.8 95.1
S_. 2.9 2.9 2.9 2.9 2.9
min
L 16.8 19.85 23.4 34.3 44.8
¥ 16.113 16.359 16.647 17.516 18.353
Notes : i) Without field in the SFM, the colliding angle y is 14.773°.

ii) The distances s, d and & given in the table are defined in fig. 27.
iii) Heavy boxes indicate standard operating conditions.
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